Search results

1 – 10 of over 1000
Article
Publication date: 29 April 2022

Mojtaba Fadaei, Mohsen Izadi, Ehsanolah Assareh and Ali Ershadi

This study aims to evaluate the melting process of the phase-change RT-35 material in a shell and tube heat exchanger saturated with a porous medium. Titanium porous media with…

Abstract

Purpose

This study aims to evaluate the melting process of the phase-change RT-35 material in a shell and tube heat exchanger saturated with a porous medium. Titanium porous media with isotropic and inhomogeneous structures are studied. The considered tubes in the shell and tube exchanger are made of copper with specific thicknesses. The phase-change material has a non-Newtonian behavior and follows the endorsed Carreau–Yasuda Model.

Design/methodology/approach

The enthalpy–porosity method is used for modeling of the melting process. The governing equations were transferred to their dimensionless forms. Finally, the equations are solved by applying the Galerkin finite element method.

Findings

The findings for different values of the relative permeability (K*) and permeability deviation angle (λ) are represented in the forms of charts, streamlines and constant temperature contours. The considerable effects of the relative permeability (K*) and deviation angle (λ) on the flow line patterns of the melting phase-change material are some of the significant achievements of this works.

Originality/value

This study was conducted using data from relevant research articles provided by reputable academic sources. The data included in this manuscript have not been published previously and are not under consideration by any other journal.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 May 2008

Yogesh Jaluria

This paper seeks to discuss the numerical modeling of the transport processes that frequently arise in practical thermal systems and involve complexities such as property…

Abstract

Purpose

This paper seeks to discuss the numerical modeling of the transport processes that frequently arise in practical thermal systems and involve complexities such as property variations with temperature or with the shear rate in the flow, complicated regions, conjugate mechanisms, chemical reactions and combined mass transfer, and intricate boundary conditions.

Design/methodology/approach

The basic approaches that may be adopted in order to study such processes are discussed. Considerations for accurate numerical modeling are also discussed. The link between the process and the resulting product is critical in many systems such as those in manufacturing. The computational difficulties that result from the non‐Newtonian behavior of the fluid or from the strong temperature dependence of viscosity are considered in detail. Similarly, complex geometry, free surface flow, moving boundaries, combined mechanisms, and simulation of appropriate boundary conditions are important in several processes and are discussed.

Findings

Some of the important techniques to treat the problems that arise in numerical simulation are presented. Common errors that lead to inaccurate or invalid results are outlined. A few practical processes are considered in greater detail to quantify and illustrate these approaches. Validation of the numerical model is a particularly important aspect and is discussed in terms of existing results, as well as development of experimental arrangements to provide inputs for satisfactory validation.

Originality/value

Practical thermal processes involve a wide variety of complexities. The paper presents some of the important ones and discusses approaches to deal with them. The paper will be of particular value to the numerical simulation of complicated thermal processes in order to design, control or optimize them to achieve desired thermal processing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 November 2019

Muhammad Ijaz Khan, Salman Ahmad, Tasawar Hayat, M. Waleed Ahmad Khan and Ahmed Alsaedi

The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined…

Abstract

Purpose

The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined magnetic field, Joule heating, viscous dissipation, heat source/sink and chemical reaction. Characteristics of nanofluid are described by Brownian motion and thermophoresis effect. At surface of the sheet zero mass flux and convective boundary condition are considered.

Design/methodology/approach

Considered flow problem is mathematically modeled and the governing system of partial differential equations is transformed into ordinary ones by using suitable transformation. The transformed ordinary differential equations system is figure out by homotopy algorithm. Outcomes of pertinent flow variables on entropy generation, skin friction, concentration, temperature, velocity, Bejan, Sherwood and Nusselts numbers are examined in graphs. Major outcomes are concluded in final section.

Findings

Velocity profile increased versus higher estimation of material and wall thickness parameter while it decays through larger Hartmann number. Furthermore, skin friction coefficient upsurges subject to higher values of Hartmann number and magnitude of skin friction coefficient decays via materials parameters. Thermal field is an increasing function of Hartmann number, radiation parameter, thermophoresis parameter and Eckert number.

Originality/value

The authors have discussed entropy generation in flow of thixotropic nanofluid over a variable thicked surface. No such consideration is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 22 July 2019

Muhammad Ijaz Khan, Sumaira Qayyum, Tasawar Hayat and Ahmed Alsaedi

The purpose of this paper is to analyze the Sutterby fluid flow by a rotating disk with homogeneous-heterogeneous reactions. Inspection of heat transfer is through…

Abstract

Purpose

The purpose of this paper is to analyze the Sutterby fluid flow by a rotating disk with homogeneous-heterogeneous reactions. Inspection of heat transfer is through Cattaneo–Christov model. Stratification effect is also considered.

Design/methodology/approach

Nonlinear equations are solved by the homotopy technique.

Findings

Sutterby fluid flow by rotating disk is not considered yet. Here the authors intend to analyze it with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. Thermal stratification is also taken into consideration.

Originality/value

No such work is yet done in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2010

Yogesh Jaluria

Experimental results play a crucial role in the validation of mathematical and numerical models for a variety of basic and applied thermal transport problems. The purpose of this…

Abstract

Purpose

Experimental results play a crucial role in the validation of mathematical and numerical models for a variety of basic and applied thermal transport problems. The purpose of this paper is to focus on the role played by experimentation in an accurate numerical simulation of thermal processes and systems.

Design/methodology/approach

The paper takes the form of a numerical simulation combined with experimentation. The paper presents various circumstances where the numerical simulation may be efficiently combined with experimentation, and indeed driven by experimental data, to obtain accurate, valid and realistic numerical predictions.

Findings

The paper demonstrates validation and accuracy of numerical simulation.

Originality/value

This paper is an important first step in combining experiments and simulation for complex thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2012

C.R. Leonardi, D.R.J. Owen and Y.T. Feng

The purpose of this paper is to present a novel computational framework based on the lattice Boltzmann method (LBM) and discrete element method (DEM) capable of simulating fines…

Abstract

Purpose

The purpose of this paper is to present a novel computational framework based on the lattice Boltzmann method (LBM) and discrete element method (DEM) capable of simulating fines migration in three dimensions. Fines migration occurs in a block cave mine, and is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material.

Design/methodology/approach

This study builds on the foundations and applications outlined in a companion paper, in which the non‐Newtonian LBM‐DEM framework is defined and applied in 2D simulations. Issues relevant to the extension to 3D, such as spatial discretisation, fluid boundary conditions and the definition of synthetic bulk material parameters using a power law model, are discussed.

Findings

The results of the 3D DEM percolation replication showed that migration is predominantly limited to within the draw zone, and that the use of a low‐cohesion material model resulted in a greater amount of fines migration. The draw sensitivity investigation undertaken with the two bell partial block cave analysis did not show a significant difference in the amount of migration, despite the two draw strategies being deliberately chosen to result in isolated and interactive draw of material.

Originality/value

Along with the companion paper, this paper presents a novel application of the developed non‐Newtonian LBM‐DEM framework in the investigation of fines migration, which until now has been limited to scale models, cellular automata or pure DEM simulations. The results highlight the potential for this approach to be applied in an industrial context, and indicate a number of potential avenues for further research.

Article
Publication date: 25 May 2012

C.R. Leonardi, D.R.J. Owen and Y.T. Feng

The purpose of this paper is to present a novel computational framework capable of simulating the block cave phenomenon of fines migration in two dimensions. Fines migration is…

Abstract

Purpose

The purpose of this paper is to present a novel computational framework capable of simulating the block cave phenomenon of fines migration in two dimensions. Fines migration is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material. A greater understanding of the kinematic behaviour of fines and ore within the cave during draw is integral to the solution of this problem.

Design/methodology/approach

The lattice Boltzmann method (LBM) is employed in a nonlinear form to represent the fines as a continuum, and it is coupled to the discrete element method (DEM) which is used to represent large blocks. The issues relevant to this approach, such as fluid‐solid interaction, the synchronisation of explicit schemes, and the characterisation of a bulk material as a non‐Newtonian fluid are discussed.

Findings

Results of the 2D simulations reveal migration trends for the geometries, material properties and operational sequences analysed. By executing an extensive programme of numerical experiments the influence of these and other relevant block cave factors on the migration of fines could be isolated.

Originality/value

To the authors' knowledge, this is the first time the LBM has been used to simulate the flow of bulk materials. The non‐Newtonian LBM‐DEM framework is also a novel approach to the investigation of fines migration, which until now has been limited to scale models, cellular automata or pure DEM simulations. The results of the 2D migration analyses highlight the potential for this novel approach to be applied in an industrial context and also encourage the extension of the framework to 3D.

Article
Publication date: 1 June 1995

D. Ding, P. Townsend and M.F. Webster

In this article we report on progress in the development of softwaretools for fluid flow prediction in the polymer processing industry. Thisinvolves state‐of‐the‐art numerical…

Abstract

In this article we report on progress in the development of software tools for fluid flow prediction in the polymer processing industry. This involves state‐of‐the‐art numerical techniques and the study of a number of non‐trivial model flow problems, in an effort to investigate realistic transient problems relevant to industrial processes. Here we study particularly the effects of variations in non‐Newtonian and heat transfer properties of the flowing materials in the flows, both throughout the transient development period and at steady‐state.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 June 2020

Naveed Imran, Maryiam Javed, Muhammad Sohail, S. Farooq and Mubashir Qayyum

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage…

Abstract

Purpose

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage of non-Newtonian fluid rheological properties enhancing, damping tools, protection apparatus individuals and in various distinct mechanical procedures. Industrial applications of non-Newtonian liquids include minimum friction, reduction in oil-pipeline friction, scale-up, flow tracers and in several others. The peristaltic mechanism is used as a non-Newtonian material carrier here. This mechanism occurs because of continuous symmetrical and asymmetrical propulsion of smooth channel walls. Peristalsis is a very significant mechanism for carrying drugs and other materials during sensitive diseases treatments.

Design/methodology/approach

Keeping in mind the considered problem assumptions (Rabinowitsch fluid model, thermal Grashof number, Prandtl number, density Grashof number, wall properties, etc.), it is found that the modeled equations are coupled and nonlinear. Thus here, analytical results are quite challenging to acquire and very limited to extremely venerated circumstances unsettled to their nonlinearity. Hence various developments found in computing proficiencies, numerical procedures that provides accurate, stable and satisfying solutions for non-Newtonian material flows exclusively in complex dimensions play a significant role. Here BVP4C numerical technique is developed to evaluate the nonlinear coupled system of equations with appropriate boundary constraints.

Findings

Due to convectively heated surface fluid between the walls having a small temperature. Sherwood and Nusselt numbers both deduce for fixed radiation values and different Rabinowitsch fluid quantity. Skin friction is maximum in the case of Newtonian, while minimum in case of dilatant model and pseudoplastic models. The influence of numerous parameters associated with flow problems such as thermal Grashof number, density Grashof number, Hartman number, Brownian motion, thermophoresis motion factor and slip parameters are also explored in detail and plotted for concentration profile, temperature distribution and velocity. From this analysis, it is concluded that velocity escalates for larger

Originality/value

The work reported in this manuscript has not been investigated so far by any researcher.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 1000