Search results

1 – 10 of 245
To view the access options for this content please click here
Article
Publication date: 4 February 2014

Hem Chander Garg and Vijay Kumar

The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load…

Abstract

Purpose

The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load, besides their relative simplicity in manufacturing. Most of the research work pertaining to non-recessed journal bearing assumes standard symmetric and asymmetric configurations. However, many more configurations are possible by changing the position of slot which may improve the performance of the slot-entry journal bearing. In the present work study of static performance characteristics of slot-entry journal bearing of different configuration has been carried out. The paper aims to discuss these issues.

Design/methodology/approach

FEM has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The performance characteristics of slot-entry hybrid journal bearings are computed by developing a computer program.

Findings

The simulated results of bearing characteristics parameters in terms of minimum fluid-film thickness and bearing flow have been presented for the wide range of various values of non-linearity factor and external load. It is found that there is an increase in the oil requirement for slot-entry hybrid journal bearing with the specified operating and geometric parameters, when the viscosity of the lubricant decreases due to the non-Newtonian behavior of the lubricant. The effect of the decrease in the viscosity of the lubricant due to non-Newtonian behavior of the lubricant diminishes the attitude angle. The computed performance characteristics are helpful for the bearing designer while choosing a particular configuration of bearing.

Research limitations/implications

The performance characteristics have been computed by considering the non-Newtonian lubricants. The thermal effects have been ignored in the analysis so as to obviate the mathematical complexity.

Originality/value

Get idea from already published manuscripts.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 16 September 2013

H.C. Garg and Vijay Kumar

The purpose of this paper is to describe the static performance characteristics of orifice compensated hole-entry hybrid journal bearing considering the combined influence…

Abstract

Purpose

The purpose of this paper is to describe the static performance characteristics of orifice compensated hole-entry hybrid journal bearing considering the combined influence of rise in temperature and non-Newtonian behavior of the lubricant. The required governing equations have been solved using the finite element method and a suitable iterative technique. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The thermohydrostatic (THS) rheological performance of asymmetric hole-entry hybrid journal bearing configurations are studied. The computed results indicate that variation of viscosity due rise in temperature and non-Newtonian behavior of the lubricant affects the performance of asymmetric hole-entry hybrid journal bearing system quite significantly.

Design/methodology/approach

The THS rheological solution of a hole-entry hybrid journal bearing system requires the simultaneous solution of Reynolds equation, 3D energy equation and 3D conduction equation along with appropriate boundary conditions. In present study an iterative numerical solution scheme is used to establish pressure and temperature fields in the lubricant fluid-film.

Findings

The computed results indicate that variation of viscosity due rise in temperature and non-Newtonian behavior of the lubricant affects the performance of asymmetric hole-entry hybrid journal bearing system quite significantly.

Originality/value

The available literature concerning the orifice compensated asymmetric hole-entry hybrid journal bearings indicates that the thermal effects together with non-Newtonian behavior of lubricant due to additives mixed in the lubricants have been ignored in the analysis so as to obviate the mathematical complexity. The bearing performance characteristics have been presented considering the combined influence of rise in temperature and non-Newtonian behavior of the lubricant for asymmetric bearing configurations.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 16 August 2011

H.C. Garg

This paper aims to describe the theoretical study concerning the effect of non‐linear behavior of the lubricant on the performance of symmetric constant flow valve…

Abstract

Purpose

This paper aims to describe the theoretical study concerning the effect of non‐linear behavior of the lubricant on the performance of symmetric constant flow valve compensated hole‐entry hybrid journal bearing. The bearing performance characteristics have been computed for various values of non‐linearity factor, land width ratio, aspect ratio and external load.

Design/methodology/approach

The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the cubic shear stress law.

Findings

The study indicates that for generation of accurate bearing characteristics data, the inclusion of non‐linear effects of lubricant in the analysis is essential.

Originality/value

The performance characteristics in terms of minimum fluid‐film thickness, fluid‐film stiffness and damping coefficients, critical mass and threshold speed for a wide range of values of the non‐linearity factor and external load are presented. The results presented are expected to be quite useful to bearing designers.

Details

Industrial Lubrication and Tribology, vol. 63 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 5 October 2012

H.C. Garg

The purpose of this paper is to present theoretical investigations of the static performance characteristics of orifice compensated symmetric hole‐entry hybrid journal…

Abstract

Purpose

The purpose of this paper is to present theoretical investigations of the static performance characteristics of orifice compensated symmetric hole‐entry hybrid journal bearing considering the combined influence of rise in temperature and non‐Newtonian behavior of the lubricant.

Design/methodology/approach

The thermohydrostatic (THS) rheological solution of a hole‐entry hybrid journal bearing system requires the simultaneous solution of Reynolds equation, energy equation and conduction equation along with appropriate boundary conditions. In the present study an iterative numerical solution scheme is used to establish pressure and temperature fields in the lubricant fluid‐film.

Findings

It is found that there is an increase in the oil requirement for a hybrid journal bearing with the specified operating and geometric parameters, when the viscosity of the lubricant decreases due to the rise in temperature and non‐Newtonian behavior of the lubricant.

Originality/value

The available literature concerning the orifice compensated symmetric hybrid/hydrodynamic journal bearings indicates that the thermal effects together with non‐Newtonian behavior of lubricant due to additives mixed in the lubricants have been ignored in the analysis so as to obviate the mathematical complexity.

Details

Journal of Engineering, Design and Technology, vol. 10 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 8 April 2014

Cheng-Hsing Hsu, Jaw-Ren Lin, Lian-Jong Mou and Chia-Chuan Kuo

– The purpose of this paper is to present a theoretical study of non-Newtonian effects in conical squeeze-film plates that is based on the Rabinowitsch fluid model.

Abstract

Purpose

The purpose of this paper is to present a theoretical study of non-Newtonian effects in conical squeeze-film plates that is based on the Rabinowitsch fluid model.

Design/methodology/approach

A non-linear, modified Reynolds equation accounting for the non-Newtonian properties following the cubic stress law equation is derived. Through a small perturbation method, first-order closed-form solutions are obtained.

Findings

It is found that the non-Newtonian properties of dilatant fluids increase the load capacity and lengthen the response time as compared to the case using a Newtonian lubricant; however, the non-Newtonian behaviors of pseudoplastic lubricants result in reverse influences.

Originality/value

Numerical tables for squeeze-film loads of conical plates are also provided for engineering applications.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 2 October 2007

R.K. Duvedi, Manpreet Singh and V.K. Jadon

The present work aims to predict accurately the bearing design data for non‐recessed hybrid journal bearings, considering the effect of non‐Newtonian behavior of lubricant

Abstract

Purpose

The present work aims to predict accurately the bearing design data for non‐recessed hybrid journal bearings, considering the effect of non‐Newtonian behavior of lubricant for different symmetric and non‐symmetric bearing geometric configurations.

Design/methodology/approach

The simultaneous solution of generalized Reynold's equation governing the laminar flow of incompressible lubricant and the equation of flow of lubricant through the capillary restrictor, considering variable viscosity of lubricant following the “Power law”, has been carried out using FEM. For a given set of bearing geometric, operating parameters and for given external vertical load, the values of various performance characteristics have been obtained for a range of values of power law index, after establishing the journal center equilibrium position, the analysis for which has been elaborately explained.

Findings

The results obtained have been presented graphically for various bearing performance characteristics. It has been observed that with decrease in power law index “n”(0<n≤1), the value of min  and load carrying capacity decreases, while bearing flow rate increases for all configuration. The load‐carrying capacity of asymmetric configurations is better and stable over entire range of restrictor design parameter. Bearing configuration with land width ratio = 0.25 and aspect ratio = 1.0, having two rows of holes and six holes in each row, will be better suited for high‐load support, as it has maximum value of minimum fluid film thickness, moderate value of bearing flow and value of attitude angle is almost constant.

Originality/value

The performance characteristics of journal bearing have been presented for a wide range of values of power law index and for different values of restrictor design parameter for capillary restrictor, after establishing the journal center equilibrium position. The comparison of the different symmetric and non‐symmetric journal‐bearing configurations to find the best geometric configuration at different operating conditions, considering the effect of non‐Newtonian behavior of lubricant, represents the originality of the work.

Details

Industrial Lubrication and Tribology, vol. 59 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 12 March 2018

Li-Ming Chu, Jaw-Ren Lin and Cai-Wan Chang-Jian

The modified Reynolds equation for non-Newtonian lubricant is derived using the viscous adsorption theory for thin-film elastohydrodynamic lubrication (TFEHL) of circular…

Abstract

Purpose

The modified Reynolds equation for non-Newtonian lubricant is derived using the viscous adsorption theory for thin-film elastohydrodynamic lubrication (TFEHL) of circular contacts. The proposed model can reasonably calculate the phenomenon in the thin-film lubrication (TFL) unexplained by the conventional EHL model. The differences between classical EHL and TFEHL with the non-Newtonian lubricants are discussed.

Design/methodology/approach

The power-law lubricating film between the elastic surfaces is modeled in the form of three layers: two adsorption layers on each surface and one middle layer. The modified Reynolds equation with power-law fluid is derived for TFEHL of circular contacts using the viscous adsorption theory. The finite difference method and the Gauss–Seidel iteration method are used to solve the modified Reynolds equation, elasticity deformation, lubricant rheology equations and load balance equations simultaneously.

Findings

The simulation results reveal that the present model can reasonably calculate the pressure distribution, the film thickness, the velocity distribution and the average viscosity in TFL with non-Newtonian lubricants. The thickness and viscosity of the adsorption layer and the flow index significantly influence the lubrication characteristics of the contact conjunction.

Originality/value

The present model can reasonably predict the average viscosity, the turning point and the derivation (log film thickness vs log speed) phenomena in the TFEHL under constant load conditions.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 16 September 2013

Jaw-Ren Lin, Rong-Fang Lu, Li-Ming Chu and Chi-Ren Hung

– The purpose of this paper is to investigate the effects of non-Newtonian rheology on the dynamic characteristics of a secant-shaped couple-stress lubricated slider bearing.

Abstract

Purpose

The purpose of this paper is to investigate the effects of non-Newtonian rheology on the dynamic characteristics of a secant-shaped couple-stress lubricated slider bearing.

Design/methodology/approach

By applying the linear dynamic theory to the film force equation, a closed-form solution of the stiffness and damping coefficients is obtained for the secant-shaped bearing taking into account the non-Newtonian effects of Stokes couple stress fluids.

Findings

Comparing with the secant-shaped Newtonian-lubricant bearing, the effects of non-Newtonian couple stresses provide an apparent improvement in the dynamic stiffness and damping characteristics, especially for the secant-shaped slider bearing operating at lower squeezing-film heights and with larger non-Newtonian couple stress parameters.

Originality/value

Comparing with those of the inclined plane-shaped non-Newtonian slider bearings, better dynamic stiffness and damping performances are provided for the secant-shaped non-Newtonian slider bearing designed at larger values of the shoulder parameters. The advantages of secant-shaped slider-bearing types provide engineers useful information in bearing selection and engineering application.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 11 April 2016

Abhishek Ghosh and Sisir Kumar Guha

Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous…

Abstract

Purpose

Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications. Moreover, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of Non-Newtonian fluids is coming more into picture. Furthermore, if turbo-machinery applications are taken into account, then it can be seen that journal bearings are used for high speed applications as well. Thus, neglecting turbulent conditions may lead to erroneous results. Hence, this paper aims to present focuses on studying the stability characteristics of finite hydrodynamic journal bearing under turbulent coupled-stress lubrication.

Design/methodology/approach

First, the governing equation relevant to the problem is generated. Then, the dynamic analysis is carried out by linear perturbation technique, leading to three perturbed equations, which are again discretized by finite difference method. Finally, these discretized equations are solved with the help of Gauss-Seidel Iteration technique with successive over relaxation scheme. Consequently, the film response coefficients and the stability parameters are evaluated at different parametric conditions.

Findings

It has been concluded from the study that with increase in value of the coupled-stress parameter, the stability of the journal may increase. Whereas, with increase in Reynolds number, the stability of the journal decreases. On the other hand, stability increases with increasing values of slenderness ratio.

Originality/value

Researches have been performed to study the dynamic characteristics of journal bearing with non-Newtonian fluid as the lubricant. But in the class of non-Newtonian lubricants, the use of coupled-stress fluid has not yet been properly investigated. So, an attempt has been made to perform the stability analysis of bearings with coupled-stress fluid as the advanced lubricant.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 1963

A.T.J. HAYWARD

The National Engineering Laboratory is one of the larger stations of the British Government's Department of Scientific and Industrial Research. Current programmes include…

Abstract

The National Engineering Laboratory is one of the larger stations of the British Government's Department of Scientific and Industrial Research. Current programmes include theoretical and experimental studies of non‐Newtonian lubricants, the development of new methods of measuring the compressibility of hydraulic fluids, research into the behaviour of oils under hydrostatic tension, and investigations of various aspects of the phenomenon of aeration in hydraulic fluids. The Laboratory's facilities for carrying out sponsored research and testing in this field are briefly described.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

1 – 10 of 245