Search results

1 – 10 of over 1000
To view the access options for this content please click here
Article
Publication date: 1 January 1986

S. Rakheja and S. Sankar

The non‐linear damping mechanisms are expressed in two general forms: velocity dependent and displacement dependent. The non‐linear damping phenomena are expressed by an…

Abstract

The non‐linear damping mechanisms are expressed in two general forms: velocity dependent and displacement dependent. The non‐linear damping phenomena are expressed by an array of ‘local constants’, whose value depends upon excitation frequency, excitation amplitude, and type of non‐linearity. Thus, the non‐linear system is replaced by several localized linear systems corresponding to every discrete frequency and amplitude of excitation. Each of the localized linear systems, thus formulated, characterizes the response behaviour of the original non‐linear system, quite accurately in the vicinity of the specific frequency and amplitude of excitation. An algorithm is developed, which expresses the non‐linear damping by an array of ‘local constants’. The algorithm then employs the usual linear design tools to generate the response characteristics almost identical to the response behaviour of the non‐linear system.

Details

Engineering Computations, vol. 3 no. 1
Type: Research Article
ISSN: 0264-4401

To view the access options for this content please click here
Article
Publication date: 1 April 1991

S. RAKHEJA and A.K.W. AHMED

A local equivalent linearization methodology is proposed to simulate non‐linear shock absorbers and dual‐phase dampers in the convenient frequency domain. The methodology…

Abstract

A local equivalent linearization methodology is proposed to simulate non‐linear shock absorbers and dual‐phase dampers in the convenient frequency domain. The methodology based on principle of energy similarity, characterizes the non‐linear dual‐phase dampers via an array of local damping constants as function of local excitation frequency and amplitude, response, and type of non‐linearity. The non‐linear behaviour of the dual‐phase dampers can thus be predicted quite accurately in the entire frequency range. The frequency response characteristics of a vehicle model employing non‐linear dual‐phase dampers, evaluated using local linearization algorithm, are compared to those of the non‐linear system, established via numerical integration, to demonstrate the effectiveness of the algorithm. An error analysis is performed to quantify the maximum error between the damping forces generated by non‐linear and locally linear simulations. The influence of damper parameters on the ride improvement potentials of dual‐phase dampers is further evaluated using the proposed methodology and discussed.

Details

Engineering Computations, vol. 8 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 6 May 2014

Chun Pong Sing, P.E.D. Love and P.R. Davis

Condition assessment on reinforced concrete (RC) structures is one of the critical issues as a result of structure degradation due to aging in many developed countries…

Abstract

Purpose

Condition assessment on reinforced concrete (RC) structures is one of the critical issues as a result of structure degradation due to aging in many developed countries. The purpose of this paper is to examine the sensitivity and reliability of the conventional dynamic response approaches, which are currently applied in the RC structures. The key indicators include: natural frequency and damping ratio. To deal with the non-linear characteristics of RC, the concept of random decrement is applied to analyze time domain data and a non-linear damping curve could be constructed to reflect the condition of RC structure.

Design/methodology/approach

A full-scale RC structure was tested under ambient vibration and the impact from a rubber hammer. Time history data were collected to analyze dynamics parameters such as natural frequency and damping ratio.

Findings

The research demonstrated that the measured natural frequency is not a good indicator for integrity assessment. Similarly, it was revealed that the traditional theory of viscous damping performed poorly for the RC with non-linear characteristics. To address this problem, a non-linear curve is constructed using random decrement and it can be used to retrieve the condition of the RC structure in a scientific manner.

Originality/value

The time domain analysis using random decrement can be used to construct a non-linear damping curve. The results from this study revealed that the damage of structure can be reflected from the changes in the damping curves. The non-linear damping curve is a powerful tool for assessing the health condition of RC structures in terms of sensitivity and reliability.

Details

Structural Survey, vol. 32 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

To view the access options for this content please click here
Article
Publication date: 23 January 2020

Tanuja Singh, Megha Kalra and Anil Kumar Misra

The paper aims to focus on adjacent buildings response, equipped with damper, to analyze the vibration reduction in the nearby buildings. The nearby buildings were also…

Abstract

Purpose

The paper aims to focus on adjacent buildings response, equipped with damper, to analyze the vibration reduction in the nearby buildings. The nearby buildings were also equipped with dampers. The occurrence of adjacent buildings with adequate or inadequate space in between is a common phenomenon. However, many a times not much attention is paid to provide or check gap adequacy or to connect the two buildings suitably to avoid pounding of two structures on each other. This study emphasizes the utility of providing a damper in between two adjacent buildings for better performance.

Design/methodology/approach

The two steel structures taken for study are prototype of two structures normally found in industrial structure such as power plant, where in one of boiler structure is often tall and braced and short structure of turbine building which is moment resistant, modeled in SAP. There could be similar such structures which are often connected to a platform or a walkway with a sliding end, so as not to transfer horizontal force to other structures. If the advantage of stiffness of tall braced structure is taken into account, shorter structure can be suitably connected to braced structure to transfer forces during seismic cases under nonlinear conditions, thereby avoiding pounding (incase gap is too less), reducing response and thus optimizing the section sizes. The structures were subjected to El Centro earthquake, to simulate MCE (which could be the other site TH scaled up as desired for real site PGA), and damper location and parameters were varied to find optimum value which offers reduced base shear, reduced top floor displacement and minimum inter story drift and highest energy absorption by fluid viscous dampers.

Findings

The findings show that taller structures, which are braced, have more stiffness; the effect of damper is more pronounced in reducing displacement of shorter moment resistant structure to the tune of 60%, with suitably defined Cd value which is found to be 600 KNs/m for the present study. Thus, advantage of stiffener structure is taken to leverage and reduce the displacement of shorter moment resistant structure in reducing its displacement under nonlinear conditions of seismic case.

Originality/value

This work shows the original findings, of the adjacent buildings response, equipped with damper, to analyze the vibration reduction on other buildings which were planned to be constructed nearby.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2002

Jinwu Xiang, Guocai Hu and Xiaogu Zhang

An equivalent linear damping model is developed for forward flight condition, with the flap/lag/pitch kinematics and nonlinear characteristics of hydraulic damper taken…

Downloads
1161

Abstract

An equivalent linear damping model is developed for forward flight condition, with the flap/lag/pitch kinematics and nonlinear characteristics of hydraulic damper taken into account. Damper axial velocity is analyzed from the velocities of the damper‐to‐blade attachment point in time domain. For the case of blade lead‐lag oscillations without forced excitation and kinematics, the equivalent linear damping is calculated from transient response with energy balance method, Fourier series based moving block analysis and Hilbert transform based technology, respectively. Results indicate that equivalent linear damping decreases significantly with lead‐lag forced excitation and flap/lag/pitch kinematics, especially with the latter in flight condition.

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article
Publication date: 20 April 2015

Mário Rui Tiago Arruda and Dragos Ionut Moldovan

– The purpose of this paper is to report the implementation of an alternative time integration procedure for the dynamic non-linear analysis of structures.

Abstract

Purpose

The purpose of this paper is to report the implementation of an alternative time integration procedure for the dynamic non-linear analysis of structures.

Design/methodology/approach

The time integration algorithm discussed in this work corresponds to a spectral decomposition technique implemented in the time domain. As in the case of the modal decomposition in space, the numerical efficiency of the resulting integration scheme depends on the possibility of uncoupling the equations of motion. This is achieved by solving an eigenvalue problem in the time domain that only depends on the approximation basis being implemented. Complete sets of orthogonal Legendre polynomials are used to define the time approximation basis required by the model.

Findings

A classical example with known analytical solution is presented to validate the model, in linear and non-linear analysis. The efficiency of the numerical technique is assessed. Comparisons are made with the classical Newmark method applied to the solution of both linear and non-linear dynamics. The mixed time integration technique presents some interesting features making very attractive its application to the analysis of non-linear dynamic systems. It corresponds in essence to a modal decomposition technique implemented in the time domain. As in the case of the modal decomposition in space, the numerical efficiency of the resulting integration scheme depends on the possibility of uncoupling the equations of motion.

Originality/value

One of the main advantages of this technique is the possibility of considering relatively large time step increments which enhances the computational efficiency of the numerical procedure. Due to its characteristics, this method is well suited to parallel processing, one of the features that have to be conveniently explored in the near future.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2005

Alessio Bonelli and Oreste S. Bursi

To propose novel predictor‐corrector time‐integration algorithms for pseudo‐dynamic testing.

Abstract

Purpose

To propose novel predictor‐corrector time‐integration algorithms for pseudo‐dynamic testing.

Design/methodology/approach

The novel predictor‐corrector time‐integration algorithms are based on both the implicit and the explicit version of the generalized‐α method. In the non‐linear unforced case second‐order accuracy, stability in energy, energy decay in the high‐frequency range as well as asymptotic annihilation are distinctive properties of the generalized‐α scheme; while in the non‐linear forced case they are the limited error near the resonance in terms of frequency location and intensity of the resonant peak. The implicit generalized‐α algorithm has been implemented in a predictor‐one corrector form giving rise to the implicit IPC‐ρ method, able to avoid iterative corrections which are expensive from an experimental standpoint and load oscillations of numerical origin. Moreover, the scheme embodies a secant stiffness formula able to approximate closely the actual stiffness of a structure. Also an explicit algorithm has been implemented, the EPC‐ρb method, endowed with user‐controlled dissipation properties. The resulting schemes have been tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, exploiting substructuring techniques.

Findings

The analytical findings and the tests have indicated that the proposed numerical strategies enhance the performance of the pseudo‐dynamic test (PDT) method even in an environment characterized by considerable experimental errors. Moreover, the schemes have been tested numerically on strongly non‐linear multiple‐degrees‐of‐freedom systems reproduced with the Bouc‐Wen hysteretic model, showing that the proposed algorithms reap the benefits of the parent generalized‐α methods.

Research limitations/implications

Further developments envisaged for this study are the application of the IPC‐ρ method and of EPC‐ρb scheme to partitioned procedures for high‐speed pseudo‐dynamic testing with substructuring.

Practical implications

The implicit IPC‐ρ and the explicit EPC‐ρb methods allow a user to have defined dissipation which reduces the effects of experimental error in the PDT without needing onerous iterations.

Originality/value

The paper proposes novel time‐integration algorithms for pseudo‐dynamic testing. Thanks to a predictor‐corrector form of the generalized‐α method, the proposed schemes maintain a high computational efficiency and accuracy.

Details

Engineering Computations, vol. 22 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 6 July 2012

Soheil Ganjefar and Mohsen Farahani

Subsynchronous resonance (SSR) problem is often created in generator rotor systems with long shafts (non‐rigid shaft) and large inertias constituting a weakly damped

Abstract

Purpose

Subsynchronous resonance (SSR) problem is often created in generator rotor systems with long shafts (non‐rigid shaft) and large inertias constituting a weakly damped mechanical system. When the electrical network resonance frequency (in which the transmission line is compensated by series capacitors) approaches shaft natural frequencies, the electrical system increases torsional torques amplitude on the shaft. The purpose of this paper is to propose a self‐tuning proportional, integral, derivative (PID) controller to damp the SSR oscillations in the power system with series compensated transmission lines.

Design/methodology/approach

To accommodate the PID controller in all power system loading conditions, the gradient descent (GD) method and a wavelet neural network (WNN) are used to update the PID gains on‐line. All parameters of the WNN are trained by the gradient descent method using adaptive learning rates (ALRs). The ALRs are derived from discrete Lyapunov stability theorem, which are applied to guarantee the convergence of the proposed control system. Also, the suggested controller is designed based on a non‐linear model.

Findings

The proposed self‐tuning PID controller is applied to a power system non‐linear model. Simulation results are used to demonstrate the effectiveness and performance of the proposed controller. It has been shown that self‐tuning PID is able to damp the SSR under any circumstances, because the WNN ensures the robustness of the controller. Simplicity and practicality of the proposed controller with its excellent performance make it ideal to be implemented in real excitation systems.

Originality/value

The proposed self‐tuning PID approach is interesting for the design of an intelligent control scheme based on non‐linear model to damp the torsional oscillations. In this suggested controller, the system conditions and requirements adjust on‐line the PID gains. On other words, to damp the SSR, PID gains are intelligently computed by the controlled system. The main contributions of this paper are: the overall control system is globally stable and hence, the SSR is controlled; the control error can be reduced to zero by appropriate chosen parameters and learning rates; and the self‐tuning PID can achieve favorable controlling performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 4 January 2008

Romain Corcolle, Erwan Salaün, Frédéric Bouillault, Yves Bernard, Claude Richard, Adrien Badel and Daniel Guyomar

To provide a model that allows testing and understanding special damping techniques.

Abstract

Purpose

To provide a model that allows testing and understanding special damping techniques.

Design/methodology/approach

The finite element modeling takes into account the piezoelectric coupling. It is used with a non linear electrical circuit. The approach leads to an accurate tool to observe the behavior of the non linear damping techniques such as synchronized switch damping.

Findings

The model has been validated by comparison with Ansys® but the CPU time required for the model is around one hundred times shorter.

Research limitations/implications

The proposed model is 1D and the assumptions to use it are not verified for all structures.

Practical implications

The authors obtain a useful tool for the design of damping structures (for example to find the best localisation of the piezoelectric patches and to test electrical circuits).

Originality/value

The model is used for the design and conception of damping as well as for harvesting structures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article
Publication date: 1 January 1985

Pál G. Bergan, Egil Mollestad and Nils Sandsmark

A method for non‐linear static and dynamic analysis of flexible systems submerged in water is outlined. The systems considered here include cable and beam elements, as…

Abstract

A method for non‐linear static and dynamic analysis of flexible systems submerged in water is outlined. The systems considered here include cable and beam elements, as well as buoys and clump weights. Contact and lift‐off between members and the sea floor is also accounted for. The formulation used allows for very large deformations and material non‐linearities. Hydrostatic buoyancy and hydrodynamic drag forces are considered throughout the analyses. These capabilities have been implemented in the general purpose non‐linear finite element program FENRIS. Aspects concerning efficient solution of the non‐linear static and dynamic equations are discussed. In particular, an efficient start‐up procedure for analysis of highly flexible systems is described. The paper shows applications involving static and dynamic analysis of a floating structure kept in place by six mooring lines and a flexible riser system.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 1000