Search results

1 – 10 of over 1000
Article
Publication date: 16 January 2024

Nasim Babazadeh, Jochen Teizer, Hans-Joachim Bargstädt and Jürgen Melzner

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as…

118

Abstract

Purpose

Construction activities conducted in urban areas are often a source of significant noise disturbances, which cause psychological and health issues for residents as well as long-term auditory impairments for construction workers. The limited effectiveness of passive noise control measures due to the close proximity of the construction site to surrounding neighborhoods often results in complaints and eventually lawsuits. These can then lead to delays and cost overruns for the construction projects.

Design/methodology/approach

The paper proposes a novel approach to integrating construction noise as an additional dimension into scheduling construction works. To achieve this, a building information model, including the three-dimensional construction site layout object geometry, resource allocation and schedule information, is utilized. The developed method explores further project data that are typically available, such as the assigned equipment to a task, its precise location, and the estimated duration of noisy tasks. This results in a noise prediction model by using noise mapping techniques and suggesting less noisy alternative ways of construction. Finally, noise data obtained from sensors in a case study contribute real values for validating the proposed approach, which can be used later to suggest solutions for noise mitigation.

Findings

The results of this study indicate that the proposed approach can accurately predict construction noise given a few available parameters from digital project planning and sensors installed on a construction site. Proactively integrating construction noise control measures into the planning process has benefits for both residents and construction managers, as it reduces construction noise-related disturbances, prevents unexpected legal issues and ensures the health and well-being of the workforce.

Originality/value

While previous research has concentrated on real-time data collection using sensors, a more effective solution would also involve addressing and mitigating construction noise during the pre-construction work planning phase.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 12 January 2024

Kai Xu, Ying Xiao and Xudong Cheng

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional…

Abstract

Purpose

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional lubricants. The experiment aims to analyze whether nanoadditive lubricants can effectively reduce gear vibration and noise under different speeds and loads. It also analyzes the sensitivity of the vibration reduction to load and speed changes. In addition, it compares the axial and radial vibration reduction effects. The goal is to explore the application of nanolubricants for vibration damping and noise reduction in gear transmissions. The results provide a basis for further research on nanolubricant effects under high-speed conditions.

Design/methodology/approach

Helical gears of 20CrMnTi were lubricated with conventional oil and nanoadditive oils. An open helical gearbox with spray lubrication was tested under different speeds (200–500 rpm) and loads (20–100 N·m). Gear noise was measured by a sound level meter. Axial and radial vibrations were detected using an M+P VibRunner system and fast Fourier transform analysis. Vibration spectrums under conventional and nanolubrication were compared. Gear tooth surfaces were observed after testing. The experiment aimed to analyze the noise and vibration reduction effects of nanoadditive lubricants on helical gears and the sensitivity to load and speed.

Findings

The key findings are that nanoadditive lubricants significantly reduce the axial and radial vibrations of helical gears under low-speed conditions compared with conventional lubricants, with a more pronounced effect on axial vibrations. The vibration reduction is more sensitive to rotational speed than load. At the same load and speed, nanolubrication reduces noise by 2%–5% versus conventional lubrication. Nanoparticles change the friction from sliding to rolling and compensate for meshing errors, leading to smoother vibrations. The nanolubricants alter the gear tooth surfaces and optimize the microtopography. The results provide a basis for exploring nanolubricant effects under high speeds.

Originality/value

The originality and value of this work is the experimental analysis of the effects of nanoadditive lubricants on the vibration and noise characteristics of hard tooth surface helical gears, which has rarely been studied before. The comparative results under different speeds and loads provide new insights into the vibration damping capabilities of nanolubricants in gear transmissions. The findings reveal the higher sensitivity to rotational speed versus load and the differences in axial and radial vibration reduction. The exploration of nanolubricant effects on gear tribological performance and surface interactions provides a valuable reference for further research, especially under higher speed conditions closer to real applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0220/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 February 2024

Miller Williams Appau, Elvis Attakora-Amaniampong and Iruka Chijindu Anugwo

Providing student housing designed to support students living with a disability is a global challenge. This study assesses buildings' physical health condition systems and drivers…

Abstract

Purpose

Providing student housing designed to support students living with a disability is a global challenge. This study assesses buildings' physical health condition systems and drivers of physical health condition effects on students living with disability (SWD) in purpose-built university housing in Ghana.

Design/methodology/approach

The study used quantitative design and methods based on the theory of supportive design premises. Using the partial least square structural equation model, a survey of 301 students living with a physical disability, mild visual disability and mild hearing disability was collected in 225 student housings.

Findings

The study found that insect control and cleaning services are a priority in off-campus building design and management and directly positively affected the sense of control and physical health of SWD. The nature of lightning systems, noise and thermal comfort directly negatively affected SWD disability learning and discomfort.

Practical implications

Reviewing and enforcing student housing design drawings at the preliminary development stage by university management is critical. More broadly, physical health systems that control cleaning, noise and thermal comfort are essential for SWD health in student housing.

Originality/value

Studies on all-inclusive building designs have consistently focused on lecture theaters and libraries with limited attention on the physical health condition systems in student housing that support the quality healthcare of university campuses. Research on physical health condition systems in student housing is significant for all-inclusiveness and student housing management.

Details

Property Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 14 August 2023

Hasim Kafali and İbrahim Güçlü

In this context, this study aims to obtain information about the noise levels emitted to the environment by modeling the noise map of Dalaman Airport and correlating these noise…

Abstract

Purpose

In this context, this study aims to obtain information about the noise levels emitted to the environment by modeling the noise map of Dalaman Airport and correlating these noise values according to the Environmental Noise Directive (END) and World Health Organization (WHO) limits.

Design/methodology/approach

Dalaman Airport Aeronautical Information Publication and 2022 flight data from the airport were analyzed. The noise levels exposed to schools and health institutions were determined using the Cnossos–Eu calculation method.

Findings

Maximum noise levels were obtained as Lden 92.29 dB(A), Lday 85.24 dB(A), Levening 89.00 dB(A) and Lnight 85.23 dB(A) according to the noise indicators. Limit values recommended by the END and WHO according to noise indicator types and measurement results were correlated and evaluated.

Originality/value

In the noise modeling of Dalaman Airport, there has previously been no evaluation of the noise limits recommended according to END or WHO in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 February 2024

Saliq Shamim Shah, Daljeet Singh, Jaswinder Singh Saini and Naveen Garg

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise…

Abstract

Purpose

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise involves the utilization of spatially demanding materials for the absorption of sound. These materials lack the ability for targeted frequency control adjustments. Hence, there is a requirement for an approach that can effectively manage low-frequency noise using lightweight and durable materials.

Design/methodology/approach

The CAD model was created in SolidWorks and was manufactured using the Digital Light Processing (DLP) 3D printing technique. Experimental study and numerical simulations examined the metamaterial’s acoustic absorption. An impedance tube with two microphones was used to determine the absorption coefficient of the metamaterial. The simulations were run in a thermoviscous module.

Findings

The testing of acoustic samples highlighted the effects of geometric parameters on acoustic performance. Increment of the strut length by 0.4 mm led to a shift in response to a lower frequency by 500 Hz. Peak absorption rose from 0.461 to 0.690 as the strut diameter was increased from 0.6 to 1.0 mm. Increasing the number of cells from 8 to 20 increased the absorption coefficient and lowered the response frequency.

Originality/value

DLP 3D printing technique was used to successfully manufacture tetrakaidecahedron-based acoustic metamaterial samples. A novel study on the effects of geometric parameters of tetrakaidecahedron cell-based acoustic metamaterial on the acoustic absorption coefficient was conducted, which seemed to be missing in the literature.

Article
Publication date: 31 October 2023

Eziaku Onyeizu Rasheed, Maryam Khoshbakht and George Baird

This paper aims to illustrate the extensive benefits of qualitative data analysis as a rarely undertaken process in post-occupancy evaluation surveys. As a result, there is…

Abstract

Purpose

This paper aims to illustrate the extensive benefits of qualitative data analysis as a rarely undertaken process in post-occupancy evaluation surveys. As a result, there is limited evidence of what occupants say about their buildings, especially for operational parameters, as opposed to how they rate them. While quantitative analyses provide useful information on how workers feel about workplace operational factors, qualitative analyses provide richer information on what aspects of the workplace workers identify as influential to their comfort, well-being and productivity.

Design/methodology/approach

The authors analysed 6,938 comments from office buildings worldwide on workers’ perception of workplace operational factors: design, storage, needs, space at desks and storage in their work environments. These factors were analysed based on the buildings’ design intent and use, and the associated comments were coded into positive, negative and balanced comments. The authors used a combination of coding, descriptive analysis, content analysis and word cloud to dissect the comments.

Findings

The findings showed that whereas workers rated these operational factors favourably, there were significantly more negative comments about each factor. Also, the Chi-square test showed a significant association (p < 0.01) between the satisfaction scale and the type of comments received for all the operational factors. This means that when a factor is rated high in the satisfaction score (5–7), there were fewer negative and more positive comments and vice versa. The word cloud analysis highlighted vital aspects of the office environment the workers mostly commented on, such as open plan design, natural lighting, space and windows, toilets, facilities, kitchens, meeting room booking systems, storage and furniture.

Research limitations/implications

This study highlights the importance of dissecting building occupants’ comments as integral to building performance monitoring and measurement. These emphasise the richness and value of respondents’ comments and the importance of critically analysing them. A limitation is that only 6,938 comments were viable for analysis because most comments were either incomplete with no meaning or were not provided. This underlines the importance of encouraging respondents to comment and express their feelings in questionnaire surveys. Also, the building use studies questionnaire data set presents extensive opportunities for further analyses of interrelationships between demographics, building characteristics and environmental and operational factors.

Practical implications

The findings from this study can be applied to future projects and facility management to maintain and improve office buildings throughout their life cycle. Also, these findings are essential in predicting the requirements of future workplaces for robust workplace designs and management.

Originality/value

The authors identified specific comments on the performance of workplaces across the globe, showing similarities and differences between sustainable, conventional, commercial and institutional buildings. Specifically, the analysis showed that office workers’ comments do not always corroborate the ratings they give their buildings. There was a significantly higher percentage of negative comments than positive comments despite the high satisfaction scores of the operational factors.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 4 January 2024

Jonas Ekow Yankah, Kofi Owusu Adjei and Chris Kurbom Tieru

Robotics and automation are successful in construction, health and safety, but costs and expertise hinder their use in developing nations. This study examined mobile apps as a…

Abstract

Purpose

Robotics and automation are successful in construction, health and safety, but costs and expertise hinder their use in developing nations. This study examined mobile apps as a more accessible and affordable alternative.

Design/methodology/approach

This descriptive study explored the use of mobile apps in construction, health and safety management. It used a literature review to identify their availability, accessibility, and capabilities. The study consisted of four five stages: searching for relevant apps, selecting them based on versatility, examining their specific functions, removing untested apps and discussing their functions based on empirical studies.

Findings

A comprehensive literature review identified 35 mobile apps that are relevant to health and safety management during construction. After rigorous analysis, eight apps were selected for further study based on their relevance, user friendliness and compliance with safety standards. These apps collectively serve 28 distinct functions, including first-aid training and administration, safety compliance and danger awareness, safety education and training, hazard detection and warnings.

Practical implications

This study suggests that mobile apps can provide a cost-effective and readily accessible alternative to robotics and automation in health and safety management in construction. Further research is needed to accurately assess the efficacy of these apps in real-world conditions.

Originality/value

This study explored the use of apps in health and safety management, highlighting their diverse capabilities and providing a framework for project managers, contractors and safety officers to select suitable apps.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 12 January 2024

Elvis Attakora-Amaniampong, Iruka Chijindu Anugwo and Miller Williams Appau

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Abstract

Purpose

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Design/methodology/approach

Using multiple regression and exploratory factor analysis through post occupancy evaluation, 26 indoor environmental quality (IEQ) indicators were explored among 1,912 students living in Purpose-Built off-campus university housing in Northern Ghana.

Findings

The study established a negative relationship between indoor environmental quality and residential mobility among student housing in Northern Ghana. Residential mobility is primarily attributed to the dissatisfaction with thermal and indoor air quality.

Practical implications

The negative relationship affects vacancy and rental cashflows for property investors. Also, understanding local environmental conditions can influence future student housing design and enhance thermal and indoor air quality.

Originality/value

The authors contribute to studies on indoor environmental quality in student housing. In addition, establishing the relationship between indoor environmental quality and residential mobility in tropical African regions is novel.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 October 2021

Sai Bharadwaj B. and Sumanth Kumar Chennupati

The purpose of this manuscript is to detect heart fault using Electrocardiogram. Mutually low and high frequency noises such as electromyography (EMG) and power line interference…

Abstract

Purpose

The purpose of this manuscript is to detect heart fault using Electrocardiogram. Mutually low and high frequency noises such as electromyography (EMG) and power line interference (PLI) degrades the performance of ECG signals.

Design/methodology/approach

The ECG record depicts the procedural electrical movement of the heart, which is non-invasive foot age obtained by placing surface electrodes on designated locations of the patient’s skin. The main concept of this manuscript is to present a novel filtering method to cancel the unwanted noises in ECG signal. Here, intrinsic time scale decomposition (ITD) is introduced to suppress the effect of PLI from ECG signals.

Findings

In the existing ITD, the gain control parameter is a constant value; however, in this paper it is an adaptive feature that varies according to certain constraints. Simulation outcomes show that the proposed method effectively reduces the effect of PLI and quantitatively express the effectiveness with different evaluation metrics.

Originality/value

The results found by the proposed method are compared with Fourier decomposition technique and eigen value decomposition methods (EDM) to validate the effectiveness of the proposed method.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 February 2024

Kiri Mealings and Joerg M. Buchholz

The purpose of this paper is to systematically map research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being, as well as…

Abstract

Purpose

The purpose of this paper is to systematically map research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being, as well as identify knowledge gaps to inform future research.

Design/methodology/approach

This scoping review followed the PRISMA-ScR protocol. A comprehensive search of four online databases (ERIC, PubMed, Scopus and Web of Science) was conducted. Peer-reviewed papers were included if they conducted a study on the effect of classroom acoustics or noise on students’ listening, learning or well-being; had a clear definition of the noise level measurement; were conducted with high school students; and had the full text in English available.

Findings

In total, 14 papers met the criteria to be included in the review. The majority of studies assessed the impact of noise on students’ listening, learning or well-being. Overall, the results showed that higher noise levels have a negative effect on students’ listening, learning and well-being. Effects were even more pronounced for students who were non-native speakers or those with special educational needs such as hearing loss. Therefore, it would be beneficial to limit unnecessary noise in the classroom as much as possible through acoustic insulation, acoustic treatment and classroom management strategies.

Originality/value

This paper is the first review paper to synthesize previous research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being. It provides an analysis of the limitations of existing literature and proposes future research to help fill in these gaps.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of over 1000