Search results

1 – 10 of 509
Article
Publication date: 1 December 1997

D. Shangguan and G. Gao

As the electronics industry moves towards the 21st century, environmentally consciousmanufacturing is becoming a very important issue for the industry. In recent years…

328

Abstract

As the electronics industry moves towards the 21st century, environmentally conscious manufacturing is becoming a very important issue for the industry. In recent years, advanced manufacturing technologies have been developed for automotive electronics packing that not only are environmentally friendly, but also reduce manufacturing complexity and cost, improve product quality, and meet the stringent reliability requirements for the automotive environment. In this paper, aspects of no‐clean soldering and lead‐free solderr development are reviewed, and some of the most critical factors for implementing no‐clean soldering and for developing lead‐free solders for automotive electronics are outlined.

Details

Soldering & Surface Mount Technology, vol. 9 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1995

E.M. Oh

PCB manufacturers are switching from the use of RMA fluxes in their soldering and rework processes to low residue type (i.e., ‘no‐clean’) fluxes. Unfortunately, successful…

Abstract

PCB manufacturers are switching from the use of RMA fluxes in their soldering and rework processes to low residue type (i.e., ‘no‐clean’) fluxes. Unfortunately, successful changeover is not simply a matter of substituting a no‐clean into an existing RMA process. Soldering process parameters must change, necessitating an understanding of the interplay between flux chemistry and heat delivery. Higher temperatures can result in an effective decrease in the concentration of the active fluxing agents. Also, data show a decrease in the inherent wetting force of a no‐clean flux with increasing temperature. These two factors reduce fluxing action below the rate of oxidation occurring at the solder connection and the soldering iron tip. These can lead to incomplete surface cleaning and inefficient heat transfer, resulting in poorly soldered connections. Lower solder joint defect rates are obtained with no‐clean solders and fluxes when soldering temperatures are reduced to a minimum.

Details

Soldering & Surface Mount Technology, vol. 7 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 January 1994

B.J. Mason

No‐clean flux printed board appraisal tests were conducted with all materials used in the production process. Metallic growths during environmental testing revealed that there was…

Abstract

No‐clean flux printed board appraisal tests were conducted with all materials used in the production process. Metallic growths during environmental testing revealed that there was incompatibility between some materials used. Initial tests with two solder resists and several fluxes showed that one non solder resisted board, soldered using a synthetically activated (SA) flux, had surface insulation resistance (SIR) two decades higher than those using low solids flux (LSF) or other SAs. For boards with solder resist, the SIR of those soldered using LSFs was higher, however, than those using SA fluxes. SIR dependence on temperature and humidity was investigated. Results demonstrated that the dominant factor to determine the SIR of a no‐clean board was the characteristics of the board substrate finish. SIR changes with condensation were logged and found to be significant for solder resist finishes. Tests proved that reducing the contamination levels under and on top of the solder resist, by using hot de‐ionised water rinsing, enabled the calculated minimum SIR level to be achieved for spray fluxed boards and minimised the possibility of metallic growth. Visual examination proved to be at least as important as SIR testing. No‐clean processes were appraised using sequential environmental conditions with differing SIR pass levels. As a result of this appraisal a maximum ionic contamination level of 0·5 μg/cm2 NaCl equivalent and Dl water rinses, before and after solder resist added, will be introduced. Ionic contamination tests indicated that contamination levels reduced with elapsed time, probably due to ionic molecules locking more firmly into the board surface structure. A novel method for SIR measurements at any voltage, developed by the author, is described. It is hoped that this paper will further the understanding of no‐clean flux issues and highlight potential solutions and pitfalls.

Details

Circuit World, vol. 20 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 January 1994

J. Lau, Y.‐H. Pao, C. Larner, R. Govila, S. Twerefour, D. Gilbert, S. Erasmus and S. Dolot

The reliability of 0.4 mm pitch, 28 mm body size, 256‐pin plastic quad flat pack (QFP) no‐clean and water‐clean solder joints has been studied by temperature cycling and…

Abstract

The reliability of 0.4 mm pitch, 28 mm body size, 256‐pin plastic quad flat pack (QFP) no‐clean and water‐clean solder joints has been studied by temperature cycling and analytical analysis. The temperature cycling test was run non‐stop for more than 6 months, and the results have been presented as a Weibull distribution. A unique temperature cycling profile has been developed based on the calculated lead stiffness, elastic and creep strains in the solder joint, and solder data. Also, the thermal fatigue life of the solder joints has been estimated and correlated with experimental results. Furthermore, a failure analysis of the solder joints has been performed using scanning electron microscopy (SEM). Finally, a quantitative comparison between the no‐clean and water‐clean QFP solder joints has been presented.

Details

Soldering & Surface Mount Technology, vol. 6 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 April 1992

J. Lau, R. Govila, C. Larner, Y.‐H. Pao, S. Erasmus, S. Dolot, M. Jalilian and M. Lancaster

Solvent‐clean and no‐clean mass reflow processes of 0.4 mm pitch, 28 mm body size, 256‐pin fine pitch quad flat packs (QFPs) are presented. Emphasis is placed on fine pitch…

Abstract

Solvent‐clean and no‐clean mass reflow processes of 0.4 mm pitch, 28 mm body size, 256‐pin fine pitch quad flat packs (QFPs) are presented. Emphasis is placed on fine pitch parameters such as printed circuit board (PCB) design, solder paste selection, stencil design, printing technology, component placement, mass reflow, cleaning and inspection. Furthermore, cross‐sections of component/PCB assemblies from both processes have been thoroughly studied using scanning electron microscopy (SEM).

Details

Circuit World, vol. 19 no. 1
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 January 1994

K.M. Adams, J.E. Anderson and Y.B. Graves

This study examines solvent extract conductivity (SEC) testing, e.g., Ionograph or Omega Meter testing, which measures ionic cleanliness of printed wiring boards (PWBs). SEC has…

Abstract

This study examines solvent extract conductivity (SEC) testing, e.g., Ionograph or Omega Meter testing, which measures ionic cleanliness of printed wiring boards (PWBs). SEC has been a quality control (QC) monitor to assure product electrical reliability. Typical SEC measurements occur after wave soldered products have been solvent‐cleaned. This study concerns SEC testing on new wave soldering processes that involve no solvent cleaning, i.e., inert gas soldering with ‘no clean’ fluxes. Results show ionic residues from ‘no clean’ fluxes may have other characteristics that make QC testing for ionic cleanliness inappropriate. However, SEC may be appropriate as a process control monitor after soldering with these fluxes. An Ionograph measured SEC response for the following chemicals: NaCl, NaF, NaBr, KCl, MgCl2, CaCl2, HCl, succinic acid, malic acid, glutaric acid, adipic acid and ethylene glycol. The list includes inorganic salts, strong electrolytes, which may arise from manufacturing or PWB materials. The list also includes weak organic acids (WOAs) common to ‘no clean’ fluxes. One non‐ionic hygroscopic chemical, ethylene glycol, was studied. Ionograph response was measured via (i) direct injection of aqueous solutions and (ii) immersion of PWBs with individual chemicals as surface deposits. All ionisable compounds, including all WOAs, produced substantial SEC response. Surface conductivity was measured at 35°C/90% relative humidity (RH) with controlled amounts of the above chemicals deposited on clean PWB test circuits. Surface loadings corresponded to the molar‐ionic equivalent of 2.0 ?g/cm2 NaCl. In addition, NaCl, adipic acid and polyethylene glycol (PEG 400) were examined as a function of concentration. Several ionisable chemicals including all WOAs produced no measurable effect, i.e., surface conductivities were indistinguishable on clean and deposited specimens. Surface conductivity increased for ionic contaminants with critical RH below ∼80% and for the non‐ionic hygroscopic glycol. SEC measurements and surface conductivities were compared. The latter is more directly related to electrical reliability. Although all ionic compounds including the WOAs showed a SEC response, not all enhanced surface conductivity. Achievement of critical RH appears to be the important factor. Adipic acid required the presence of hygroscopic glycol to enhance surface conductivity. Therefore, SEC can be a misleading QC test for electrical reliability when WOA flux residues are present.

Details

Circuit World, vol. 20 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 February 1995

W. Rubin

No‐clean fluxes and solder pastes are rapidly finding an important position in soldering production technology. Their growth has been strongly influenced by the increasingly large…

Abstract

No‐clean fluxes and solder pastes are rapidly finding an important position in soldering production technology. Their growth has been strongly influenced by the increasingly large usage of surface mount components, and accelerated by the need for an alternative to cleaning procedures which incorporate CFCs. The ‘no‐clean’ concept is not new, but the very low residue levels now attainable have added an important new dimension in formulation and inspection technologies.

Details

Circuit World, vol. 21 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 April 1996

C. Ramirez and K.‐S. Lei

The reliability and corrosivity of two VOC ‐ free, no‐cleanfluxes (C and D) were assessed using traditional test method such as copper mirror and copper corrosiontests. Modified…

373

Abstract

The reliability and corrosivity of two VOC ‐ free, no‐clean fluxes (C and D) were assessed using traditional test method such as copper mirror and copper corrosion tests. Modified surface insulation resistance (SIR) tests using coupons fluxed with various methods were performed in 50°C/90%RH environmental conditions. Printed circuit boards and assemblies were fluxed and exposed to a 50°C/90%RH chamber to assess long‐term reliability. To evaluate the corrosion rates of copper and solder sheets in as‐ received liquid fluxes, electrochemical polarisation measurements were employed. These showed that the corrosion rate of copper in flux D is 100 times higher than that in flux C. These quantitative data agreed with the qualitative copper mirror test results, i,e, flux C passed and flux D failed the test. However, both flux residues were found to corrode copper traces underneath the solder mask and copper pads on the PCB after three weeks in a 50°C/90% RH environment chamber. Large amounts of blue/green corrosion products were observed on the bare copper SIR coupons within seven days when using either flux; and SIR values were below the required 108 ohms. Based on the test results, neither flux was qualified for no‐clean processes because of the issues with corrosion. The corrosiveness of the VOC‐ free, no‐ clean flux residue is believed to be due to the activator packages used.

Details

Soldering & Surface Mount Technology, vol. 8 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1992

W. Leske and J. Koch

In SMD as well as in hybrid manufacturing processes, considerable quantities of CFC are still being used in 1991 for the cleaning of component groups. The second BlmSchV, as…

Abstract

In SMD as well as in hybrid manufacturing processes, considerable quantities of CFC are still being used in 1991 for the cleaning of component groups. The second BlmSchV, as amended, (status at 12 December 1990), prohibits the use of R‐113 for surface treatment plants as of 31 December 1992. Pursuant to developments in solder pastes, some products are already available which render the use of CFCs superfluous. Two methods in particular are emerging, which work either completely without cleaning or use water as a cleaning medium. A critical comparison is made of the properties of the relevant solder pastes in these categories.

Details

Soldering & Surface Mount Technology, vol. 4 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 February 1995

G.M. Wenger, D.A. Machusak and J.L. Parker

Organic solderability preservative (OSP) coatings are not new. They have been used successfully with aggressive water soluble flux for assembly of through‐hole only PWBs. However…

Abstract

Organic solderability preservative (OSP) coatings are not new. They have been used successfully with aggressive water soluble flux for assembly of through‐hole only PWBs. However, the multiple heating cycles required for mixed technology assembly and use of no‐clean low solids flux (LSF) for wave solder assembly have placed a greater demand on the solderability protection provided by OSPs. Wetting balance and float testing were used to evaluate numerous OSPs as well as the potential for these surface finishes to be used for ‘No‐Clean’ assembly. Although these laboratory evaluations revealed that OSPs are not as robust as SnPb, they did indicate the assembly processes and materials which could work with OSPs. Additional simulated assembly trials with test vehicles confirmed that thick OSP pre‐flux coatings interfere with soldering and that the solderability of surfaces with thin OSPs degrades when heated in an air environment. Since none of the OSPs evaluated outperformed the imidazole currently in use at AT&T, a no‐clean LSF assembly production trial with a mixed technology telecommunication circuit pack was conducted to compare imidazole with hot air solder levelled surfaces. The production trial and laboratory evaluations resulted in the development of an application model. The elements of the application model are not complicated: (1) use thin OSPs, (2) avoid baking, (3) use as aggressive a flux as possible, (4) apply as much flux as possible, (5) apply the flux where you want solder to wet, and (6) use nitrogen inerted processes whenever possible. Combination of these elements has led to the successful implementation of OSPs for no‐clean assembly. Funding for this effort was obtained through the National Center for Manufacturing Sciences (NCMS) Printed Wiring Board Interconnect Program.

Details

Soldering & Surface Mount Technology, vol. 7 no. 2
Type: Research Article
ISSN: 0954-0911

1 – 10 of 509