Search results

1 – 10 of 75
Expert briefing
Publication date: 20 March 2024

Fertiliser use will grow, driven by population growth in developing economies. Emissions from fertiliser use will also grow, as decarbonisation options are high-cost and difficult…

Details

DOI: 10.1108/OXAN-DB285960

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 2 February 2022

Munir Ahmed, Muhammad Shakaib and Mubashir Ali Siddiqui

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different…

Abstract

Purpose

Combustion of fuel with oxidizer inside a combustion chamber of an internal combustion engine forms inevitable oxides of nitrogen (NOx) due to high temperature at different locations of the combustion chamber. This study aims to quantify NOx formed inside the combustion chamber using two fuels, a conventional diesel (n-heptane) and a biodiesel (methyl oleate).

Design/methodology/approach

This research uses a computational fluid dynamics simulation of chemically reacting fluid flow to quantify and compare oxides of nitrogen (NOx) in a compression ignition (CI) engine. The study expends species transport model of ANSYS FLUENT. The simulation model has provided the temperature profile inside the combustion chamber, which is subsequently used to calculate NOx using the NOx model. The simulation uses a single component hydrocarbon and oxygenated hydrocarbon to represent fuels; for instance, it uses n-heptane (C7H16) for diesel and methyl-oleate (C19H36O2) for biodiesel. A stoichiometric air–fuel mixture is used for both fuels. The simulation runs a single cylinder CI engine of 650 cm3 swept volume with inlet and exhaust valves closed.

Findings

The pattern for variation of velocity, an important flow parameter, which affects combustion and subsequently oxides of nitrogen (NOx) formation at different piston locations, is similar for the two fuels. The variations of in-cylinder temperature and NOx formation with crank angles have similar patterns for the fuels, diesel and biodiesel. However, the numerical values of in-cylinder temperature and mass fraction of NOx are different. The volume averaged static peak temperatures are 1,013 K in case of diesel and 1,121 K in case of biodiesel, while the mass averaged mass fractions of NOx are 15 ppm for diesel and 141 ppm for biodiesel. The temperature rise after combustion is more in case of biodiesel, which augments the oxides of nitrogen formation. A new parameter, relative mass fraction of NOx, yields 28% lower value for biodiesel than for diesel.

Originality/value

This work uses a new concept of simulating simple chemical reacting system model to quantify oxides of NOx using single component fuels. Simplification has captured required fluid flow data to analyse NOx emission from CI engine while reducing computational time and expensive experimental tests.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 January 2024

He Lu, Yuhou Wu, Zijin Liu, He Wang, Guangyu Yan, Xu Bai, Jiancheng Guo and Tongxiang Zheng

Preparing CrAlN coatings on the surface of silicon nitride bearings can improve their service life in oil-free lubrication. This paper aims to match the optimal process parameters…

Abstract

Purpose

Preparing CrAlN coatings on the surface of silicon nitride bearings can improve their service life in oil-free lubrication. This paper aims to match the optimal process parameters for preparing CrAlN coatings on silicon nitride surfaces, and reveal the microscopic mechanism of process parameter influence on coating wear resistance.

Design/methodology/approach

This study used molecular dynamics to analyze how process parameters affected the nucleation density, micromorphology, densification and internal stress of CrAlN coatings. An orthogonal test method was used to examine how deposition time, substrate temperature, nitrogen-argon flow rate and sputtering power impacted the wear resistance of CrAlN coatings under dry friction conditions.

Findings

Nucleation density, micromorphology, densification and internal stress have a significant influence on the surface morphology and wear resistance of CrAlN coatings. The process parameters for better wear resistance of the CrAlN coatings were at a deposition time of 120 min, a substrate temperature of 573 K, a nitrogen-argon flow rate of 1:1 and a sputtering power of 160 W.

Originality/value

Simulation analysis and experimental results of this paper can provide data to assist in setting process parameters for applying CrAlN coatings to silicon nitride bearings.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 1 March 2024

Priyajit Mondal, Dhritishree Ghosh, Madhupa Seth and Subhra Kanti Mukhopadhyay

The purpose of this article is to provide information about interactions between pink-pigmented facultative methylotroph (PPFM) organisms and plants, their molecular mechanisms of…

Abstract

Purpose

The purpose of this article is to provide information about interactions between pink-pigmented facultative methylotroph (PPFM) organisms and plants, their molecular mechanisms of methylotrophic metabolism, application of PPFMs in agriculture, biotechnology and bioremediation and also to explore lacuna in PPFMs research and direction for future research.

Design/methodology/approach

Research findings on PPFM organisms as potent plant growth promoting organisms are discussed in the light of reports published by various workers. Unexplored field of PPFM research are detected and their application as a new group of biofertilizer that also help host plants to overcome draught stress in poorly irrigated crop field is suggested.

Findings

PPFMs are used as plant growth promoters for improved crop yield, seed germination capacity, resistance against pathogens and tolerance against drought stress. Anti-oxidant and UV resistant properties of PPFM pigments protect the host plants from strong sunshine. PPFMs have excellent draught ameliorating capacity.

Originality/value

To meet the ever increasing world population, more and more barren, less irrigated land has to be utilized for agriculture and horticulture purpose and use of PPFM group of organisms due to their draught ameliorating properties in addition to their plant growth promoting characters will be extremely useful. PPFMs are also promising candidates for the production of various industrially and medicinally important enzymes and other value-added products. Wider application of this ecofriendly group of bacteria will reduce crop production cost thus improving economy of the farmers and will be a greener alternative of hazardous chemical fertilizers and fungicides.

Graphicalabstract:

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 21 November 2023

Pham Duc Tai, Krit Jinawat and Jirachai Buddhakulsomsiri

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a…

Abstract

Purpose

Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.

Design/methodology/approach

The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented ε-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.

Findings

For the applicability of the model, the results indicate that the augmented ε-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented ε-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.

Originality/value

The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 March 2024

Inani Husna Zamri, Beverley R. Lord and Natasja Steenkamp

This study aims to explore farmers’ perceptions of environmental impacts of dairying and their practices towards implementing environmental management accounting (EMA) techniques.

Abstract

Purpose

This study aims to explore farmers’ perceptions of environmental impacts of dairying and their practices towards implementing environmental management accounting (EMA) techniques.

Design/methodology/approach

Semi-structured interviews were held with five dairy farmers in the South Island of New Zealand (NZ).

Findings

Dairy farmers perceive environmental sustainability in dairying as being able to feed people while protecting the environment so that future generations can also enjoy the natural world. Recognising the need to alter their practices to reduce environmental damage they have produced, dairy farmers use some EMA techniques, but the primary motivation is compliance with government regulations. Other motivations for using EMA techniques are high economic returns, maintaining their reputation and self-satisfaction. Barriers to implementing EMA techniques are primarily due to lack of clarity and feasibility of regulations, coercion and inadequate communication by regulators and high compliance costs.

Originality/value

The findings contribute to the current EMA literature by providing a better understanding of EMA practices of dairy farmers in NZ, barriers to implementing EMA and how those barriers could be reduced. It may also help NZ central and local government in developing environmental strategies and policies. Furthermore, this research is expected to help people in the dairy industry to find ways to educate farmers about how the measures that are required can help them to reduce both the environmental impacts and the costs of dairying, thus contributing to sustainable development globally.

Details

Meditari Accountancy Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-372X

Keywords

Article
Publication date: 9 June 2023

Paula Hearn Moore, Ben Le and Donna L. Paul

This paper examines how manufacturing firms impacted by the nitrogen oxides (NOx) Budget Trading Program (NBP) strategically managed working capital to release funds for increased…

Abstract

Purpose

This paper examines how manufacturing firms impacted by the nitrogen oxides (NOx) Budget Trading Program (NBP) strategically managed working capital to release funds for increased costs and mitigate the negative impact on firm performance.

Design/methodology/approach

The study uses a panel data set including 11,302 manufacturing firm-year observations listed on the US exchanges during the period 2000–2008. The authors use Tobin's Q to proxy for firm performance, and cash holding, cash conversion cycle (CCC), days sales outstanding (DSO), days sales inventory (DSI) and days payable outstanding (DPO) for working capital management (WCM). The empirical analysis is conducted using both ordinary least squares (OLS) and propensity score matching (PSM) regressions.

Findings

The authors find that firms respond to the higher utility costs imposed by the NBP by decreasing CCC, DSO and DSI. This active WCM response partially mitigated the impact of increased compliance costs on performance for firms affected by the NBP. Results are robust in PSM regressions.

Research limitations/implications

Climate change is a global issue that has attracted increasing attention in recent years. This study shows how firms can adjust short-term financing strategies to address the costs of compliance with climate change regulation.

Originality/value

The paper contributes to the emerging literature on corporate finance and climate policy actions. The authors use the unique experimental setting of the NBP to examine the regulatory impact on corporate financial management. The authors demonstrate how firms used active WCM to mitigate the negative performance impact of regulatory compliance with the NBP, providing novel insight on the implication of compliance with climate change legislation.

Details

International Journal of Managerial Finance, vol. 20 no. 2
Type: Research Article
ISSN: 1743-9132

Keywords

Article
Publication date: 12 March 2024

Laharish Guntuka, Prabhjot S. Mukandwal, Emel Aktas and Vamsi Sai Krishna Paluvadi

We conduct a multidisciplinary systematic literature review on climate neutrality in the supply chain. While carbon neutrality has gained prominence, our study argues that…

Abstract

Purpose

We conduct a multidisciplinary systematic literature review on climate neutrality in the supply chain. While carbon neutrality has gained prominence, our study argues that achieving carbon neutrality alone is not enough to address climate change effectively, as non-CO2 greenhouse gases (GHG) are potent contributors to global warming.

Design/methodology/approach

We used multiple databases, including EBSCO, ProQuest, Science Direct, Emerald and Google Scholar, to identify articles related to climate neutrality in the context of non-CO2 gases. A total of 71 articles in environmental science, climate change, energy systems, agriculture and logistics are reviewed to provide insights into the climate neutrality of supply chains.

Findings

We find that, in addition to CO2, other GHG such as methane, nitrous oxide, ozone and fluorinated gases also significantly contribute to climate change. Our literature review identified several key pillars for achieving net-zero GHG emissions, including end-use efficiency and electrification, clean electricity supply, clean fuel supply, “GHG capture, storage and utilization,” enhanced land sinks, reduced non-CO2 emissions and improved feed and manure management.

Originality/value

We contribute to the literature on climate neutrality of supply chains by emphasizing the significance of non-CO2 GHG along with CO2 and highlighting the need for a comprehensive approach to climate neutrality in addressing climate change. This study advances the understanding of climate neutrality of supply chains and contributes to the discourse on effective climate change mitigation strategies. It provides clear future research directions.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

1385

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 75