Search results

1 – 10 of 37
Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 December 2022

Eswara Krishna Mussada

The purpose of the study is to establish a predictive model for sustainable wire electrical discharge machining (WEDM) by using adaptive neuro fuzzy interface system (ANFIS)…

Abstract

Purpose

The purpose of the study is to establish a predictive model for sustainable wire electrical discharge machining (WEDM) by using adaptive neuro fuzzy interface system (ANFIS). Machining was done on Titanium grade 2 alloy, which is also nicknamed as workhorse of commercially pure titanium industry. ANFIS, being a state-of-the-art technology, is a highly sophisticated and reliable technique used for the prediction and decision-making.

Design/methodology/approach

Keeping in the mind the complex nature of WEDM along with the goal of sustainable manufacturing process, ANFIS was chosen to construct predictive models for the material removal rate (MRR) and power consumption (Pc), which reflect environmental and economic aspects. The machining parameters chosen for the machining process are pulse on-time, wire feed, wire tension, servo voltage, servo feed and peak current.

Findings

The ANFIS predicted values were verified experimentally, which gave a root mean squared error (RMSE) of 0.329 for MRR and 0.805 for Pc. The significantly low RMSE verifies the accuracy of the process.

Originality/value

ANFIS has been there for quite a time, but it has not been used yet for its possible application in the field of sustainable WEDM of titanium grade-2 alloy with emphasis on MRR and Pc. The novelty of the work is that a predictive model for sustainable machining of titanium grade-2 alloy has been successfully developed using ANFIS, thereby showing the reliability of this technique for the development of predictive models and decision-making for sustainable manufacturing.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 18 January 2024

Naraindra Kistamah

This chapter offers an overview of the applications of artificial intelligence (AI) in the textile industry and in particular, the textile colouration and finishing industry. The…

Abstract

This chapter offers an overview of the applications of artificial intelligence (AI) in the textile industry and in particular, the textile colouration and finishing industry. The advent of new technologies such as AI and the Internet of Things (IoT) has changed many businesses and one area AI is seeing growth in is the textile industry. It is estimated that the AI software market shall reach a new high of over US$60 billion by 2022, and the largest increase is projected to be in the area of machine learning (ML). This is the area of AI where machines process and analyse vast amount of data they collect to perform tasks and processes. In the textile manufacturing industry, AI is applied to various areas such as colour matching, colour recipe formulation, pattern recognition, garment manufacture, process optimisation, quality control and supply chain management for enhanced productivity, product quality and competitiveness, reduced environmental impact and overall improved customer experience. The importance and success of AI is set to grow as ML algorithms become more sophisticated and smarter, and computing power increases.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 28 February 2023

Gautam Srivastava and Surajit Bag

Data-driven marketing is replacing conventional marketing strategies. The modern marketing strategy is based on insights derived from customer behavior information gathered from…

1587

Abstract

Purpose

Data-driven marketing is replacing conventional marketing strategies. The modern marketing strategy is based on insights derived from customer behavior information gathered from their facial expressions and neuro-signals. This study explores the potential for face recognition and neuro-marketing in modern-day marketing.

Design/methodology/approach

The study conducts an in-depth examination of the extant literature on neuro-marketing and facial recognition marketing. The articles for review are downloaded from the Scopus database, and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) is then used to screen and choose the relevant papers. The systematic literature review method is applied to conduct the study.

Findings

An extensive review of the literature reveals that the domains of neuro-marketing and face recognition marketing remain understudied. The authors’ review of selected papers delivers five neuro-marketing and facial recognition marketing themes that are essential to modern marketing concepts.

Practical implications

Neuro-marketing and facial recognition marketing are artificial intelligence (AI)-enabled marketing techniques that assist in gaining cognitive insights into human behavior. The findings would be of use to managers in designing marketing strategies to enhance their marketing approach and boost conversion rates.

Originality/value

The uniqueness of this study lies in that it provides an updated review on neuro-marketing and face recognition marketing.

Details

Benchmarking: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 1463-5771

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1377

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 February 2024

Saba Sareminia, Zahra Ghayoumian and Fatemeh Haghighat

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring…

Abstract

Purpose

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring high-quality products at a reduced cost has become a significant concern for countries. The primary objective of this research is to leverage data mining and data intelligence techniques to enhance and refine the production process of texturized yarn by developing an intelligent operating guide that enables the adjustment of production process parameters in the texturized yarn manufacturing process, based on the specifications of raw materials.

Design/methodology/approach

This research undertook a systematic literature review to explore the various factors that influence yarn quality. Data mining techniques, including deep learning, K-nearest neighbor (KNN), decision tree, Naïve Bayes, support vector machine and VOTE, were employed to identify the most crucial factors. Subsequently, an executive and dynamic guide was developed utilizing data intelligence tools such as Power BI (Business Intelligence). The proposed model was then applied to the production process of a textile company in Iran 2020 to 2021.

Findings

The results of this research highlight that the production process parameters exert a more significant influence on texturized yarn quality than the characteristics of raw materials. The executive production guide was designed by selecting the optimal combination of production process parameters, namely draw ratio, D/Y and primary temperature, with the incorporation of limiting indexes derived from the raw material characteristics to predict tenacity and elongation.

Originality/value

This paper contributes by introducing a novel method for creating a dynamic guide. An intelligent and dynamic guide for tenacity and elongation in texturized yarn production was proposed, boasting an approximate accuracy rate of 80%. This developed guide is dynamic and seamlessly integrated with the production database. It undergoes regular updates every three months, incorporating the selected features of the process and raw materials, their respective thresholds, and the predicted levels of elongation and tenacity.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 February 2024

Leonardo Valero Pereira, Walter Jesus Paucar Casas, Herbert Martins Gomes, Luis Roberto Centeno Drehmer and Emanuel Moutinho Cesconeto

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road…

Abstract

Purpose

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road profile.

Design/methodology/approach

For a classically designed linear quadratic regulator (LQR) control, the vibration attenuation performance will depend on weighting matrices Q and R. A methodology is proposed in this work to determine the optimal elements of these matrices by using a genetic algorithm method to get enhanced controller performance. The active control is implemented in an eight degrees of freedom (8-DOF) vehicle suspension model, subjected to a standard ISO road profile. The control performance is compared against a controlled system with few Q and R parameters, an active system without optimized gain matrices, and an optimized passive system.

Findings

The control with 12 optimized parameters for Q and R provided the best vibration attenuation, reducing significantly the Root Mean Square (RMS) accelerations at the driver’s seat and car body.

Research limitations/implications

The research has positive implications in a wide class of active control systems, especially those based on a LQR, which was verified by the multibody dynamic systems tested in the paper.

Practical implications

Better active control gains can be devised to improve performance in vibration attenuation.

Originality/value

The main contribution proposed in this work is the improvement of the Q and R parameters simultaneously, in a full 8-DOF vehicle model, which minimizes the driver’s seat acceleration and, at the same time, guarantees vehicle safety.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 January 2024

Merly Thomas and Meshram B.B.

Denial-of-service (DoS) attacks develop unauthorized entry to various network services and user information by building traffic that creates multiple requests simultaneously…

Abstract

Purpose

Denial-of-service (DoS) attacks develop unauthorized entry to various network services and user information by building traffic that creates multiple requests simultaneously making the system unavailable to users. Protection of internet services requires effective DoS attack detection to keep an eye on traffic passing across protected networks, freeing the protected internet servers from surveillance threats and ensuring they can focus on offering high-quality services with the fewest response times possible.

Design/methodology/approach

This paper aims to develop a hybrid optimization-based deep learning model to precisely detect DoS attacks.

Findings

The designed Aquila deer hunting optimization-enabled deep belief network technique achieved improved performance with an accuracy of 92.8%, a true positive rate of 92.8% and a true negative rate of 93.6.

Originality/value

The introduced detection approach effectively detects DoS attacks available on the internet.

Details

International Journal of Web Information Systems, vol. 20 no. 1
Type: Research Article
ISSN: 1744-0084

Keywords

1 – 10 of 37