Search results

1 – 10 of 47
Article
Publication date: 21 December 2023

Edgardo Sica, Hazar Altınbaş and Gaetano Gabriele Marini

Public debt forecasts represent a key policy issue. Many methodologies have been employed to predict debt sustainability, including dynamic stochastic general equilibrium models…

Abstract

Purpose

Public debt forecasts represent a key policy issue. Many methodologies have been employed to predict debt sustainability, including dynamic stochastic general equilibrium models, the stock flow consistent method, the structural vector autoregressive model and, more recently, the neuro-fuzzy method. Despite their widespread application in the empirical literature, all of these approaches exhibit shortcomings that limit their utility. The present research adopts a different approach to public debt forecasts, that is, the random forest, an ensemble of machine learning.

Design/methodology/approach

Using quarterly observations over the period 2000–2021, the present research tests the reliability of the random forest technique for forecasting the Italian public debt.

Findings

The results show the large predictive power of this method to forecast debt-to-GDP fluctuations, with no need to model the underlying structure of the economy.

Originality/value

Compared to other methodologies, the random forest method has a predictive capacity that is granted by the algorithm itself. The use of repeated learning, training and validation stages provides well-defined parameters that are not conditional to strong theoretical restrictions This allows to overcome the shortcomings arising from the traditional techniques which are generally adopted in the empirical literature to forecast public debt.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 13 January 2022

Zeinab Rahimi Rise and Mohammad Mahdi Ershadi

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts…

Abstract

Purpose

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts of infectious diseases in comparison with predicted gross domestic product (GDP) in future years could be beneficial for this aim along with predicted social impacts of infectious diseases in countries.

Design/methodology/approach

The proposed uncertain SEIAR (susceptible, exposed, infectious, asymptomatic and removed) model evaluates the impacts of variables on different trends using scenario base analysis. This model considers different subsystems including healthcare systems, transportation, contacts and capacities of food and pharmaceutical networks for sensitivity analysis. Besides, an adaptive neuro-fuzzy inference system (ANFIS) is designed to predict the GDP of countries and determine the economic impacts of infectious diseases. These proposed models can predict the future socioeconomic trends of infectious diseases in each country based on the available information to guide the decisions of government planners and policymakers.

Findings

The proposed uncertain SEIAR model predicts social impacts according to uncertain parameters and different coefficients appropriate to the scenarios. It analyzes the sensitivity and the effects of various parameters. A case study is designed in this paper about COVID-19 in a country. Its results show that the effect of transportation on COVID-19 is most sensitive and the contacts have a significant effect on infection. Besides, the future annual costs of COVID-19 are evaluated in different situations. Private transportation, contact behaviors and public transportation have significant impacts on infection, especially in the determined case study, due to its circumstance. Therefore, it is necessary to consider changes in society using flexible behaviors and laws based on the latest status in facing the COVID-19 epidemic.

Practical implications

The proposed methods can be applied to conduct infectious diseases impacts analysis.

Originality/value

In this paper, a proposed uncertain SEIAR system dynamics model, related sensitivity analysis and ANFIS model are utilized to support different programs regarding policymaking and economic issues to face infectious diseases. The results could support the analysis of sensitivities, policies and economic activities.

Highlights:

  • A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

  • Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

  • Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

  • An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

  • A real case study is considered to evaluate the performances of the proposed models.

A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

A real case study is considered to evaluate the performances of the proposed models.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 August 2023

Mohammad Iranmanesh, Morteza Ghobakhloo, Behzad Foroughi, Mehrbakhsh Nilashi and Elaheh Yadegaridehkordi

This study aims to explore and ranks the factors that might determine attitudes and intentions toward using autonomous vehicles (AVs).

Abstract

Purpose

This study aims to explore and ranks the factors that might determine attitudes and intentions toward using autonomous vehicles (AVs).

Design/methodology/approach

The “technology acceptance model” (TAM) was extended by assessing the moderating influences of personal-related factors. Data were collected from 378 Vietnamese and analysed using a combination of “partial least squares” and the “adaptive neuro-fuzzy inference system” (ANFIS) technique.

Findings

The findings demonstrated the power of TAM in explaining the attitude and intention to use AVs. ANFIS enables ranking the importance of determinants and predicting the outcomes. Perceived ease of use and attitude were the most crucial drivers of attitude and intention to use AVs, respectively. Personal innovativeness negatively moderates the influence of perceived ease of use on attitude. Data privacy concerns moderate positively the impact of perceived usefulness on attitude. The moderating effect of price sensitivity was not supported.

Practical implications

These findings provide insights for policymakers and automobile companies' managers, designers and marketers on driving factors in making decisions to adopt AVs.

Originality/value

The study extends the AVs literature by illustrating the importance of personal-related factors, ranking the determinants of attitude and intention, illustrating the inter-relationships among AVs adoption factors and predicting individuals' attitudes and behaviours towards using AVs.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 27 October 2023

Murat Gunduz, Khalid Naji and Omar Maki

This paper aims to present the development of a holistic campus facility management (CFM) performance assessment framework that incorporates a fuzzy logic approach and integrates…

Abstract

Purpose

This paper aims to present the development of a holistic campus facility management (CFM) performance assessment framework that incorporates a fuzzy logic approach and integrates a comprehensive set of key factors for successful management of campus facilities. The devised framework aims to cater to the needs of campus facilities management firms and departments for the purpose of gauging and assessing their performance across different management domains. Through this approach, facility management organizations can detect potential areas of enhancement and adopt preemptive steps to evade issues, foster progress and ensure success.

Design/methodology/approach

After a comprehensive analysis of the literature, conducting in-depth interviews with industry experts and employing the Delphi technique in two rounds, a total of 45 indicators critical to CFM success were identified and subsequently sorted into seven distinct groups. Through an online questionnaire, 402 subject-matter experts proficiently assessed the significance of the critical success indicators and their groups. A fuzzy logic framework was developed to evaluate and quantify a firm's compliance with the critical success indicators and groups of indicators. The framework was subsequently weighted using computations of the relative importance index (RII) based on the responses received from the questionnaire participants. The initial section of the framework involved a comprehensive analysis of the firm's performance vis-à-vis the indicators, while the latter part sought to evaluate the impact of the indicators groups on the overall firm's performance.

Findings

The utilization of fuzzy logic has uncovered the significant effects each effective CFM key indicator on indicators groups, as well as the distinct effects of each CFM indicators group on the overall performance of CFM. The results reveal that financial management, communications management, sustainability and environment management and workforce management are the most impactful indicators groups on the CFM performance. This suggests that it is imperative for management to allocate increased attention to these specific areas.

Originality/value

This study contributes to the advancement of current knowledge by revealing vital indicators of effective CFM and utilizing them to construct a thorough fuzzy logic framework that can assist in evaluating the effectiveness of CFM firms worldwide. This has the potential to provide crucial assistance to facility management organizations, facility managers and policymakers in their quest for informed decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 January 2023

Ibrahim Yahaya Wuni and Khwaja Mateen Mazher

Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced…

Abstract

Purpose

Modular integrated construction (MiC) is a modern construction method innovating and reinventing the traditional site-based construction method. As it integrates advanced manufacturing principles and requires offsite production of volumetric building components, several factors and conditions must converge to make the MiC method suitable and efficient for building projects in each context. This paper aims to present a knowledge-based decision support system (KB-DSS) for assessing a project’s suitability for the MiC method.

Design/methodology/approach

The KB-DSS uses 21 significant suitability decision-making factors identified through literature review, consultation of experts and questionnaire surveys. It has a knowledge base, a DSS and a user interface. The knowledge base comprises IF-THEN production rules to compute the MiC suitability score with the efficient use of the powerful reasoning and explanation capabilities of DSS.

Findings

The tool receives the inputs of a decision-maker, computes the MiC suitability score for a given project and generates recommendations based on the score. Three real-world projects in Hong Kong are used to demonstrate the applicability of the tool for solving the MiC suitability assessment problem.

Originality/value

This study established the complex and competing significant conditions and factors determining the suitability of the MiC method for construction projects. It developed a unique tool combining the capabilities of expert systems and decision support system to address the complex problem of assessing the suitability of the MiC method for construction projects in a high-density metropolis.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 8 January 2024

Indranil Ghosh, Rabin K. Jana and Dinesh K. Sharma

Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive…

Abstract

Purpose

Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive modeling framework for predicting the future figures of Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Stellar (XLM) and Tether (USDT) during normal and pandemic regimes.

Design/methodology/approach

Initially, the major temporal characteristics of the price series are examined. In the second stage, ensemble empirical mode decomposition (EEMD) and maximal overlap discrete wavelet transformation (MODWT) are used to decompose the original time series into two distinct sets of granular subseries. In the third stage, long- and short-term memory network (LSTM) and extreme gradient boosting (XGB) are applied to the decomposed subseries to estimate the initial forecasts. Lastly, sequential quadratic programming (SQP) is used to fetch the forecast by combining the initial forecasts.

Findings

Rigorous performance assessment and the outcome of the Diebold-Mariano’s pairwise statistical test demonstrate the efficacy of the suggested predictive framework. The framework yields commendable predictive performance during the COVID-19 pandemic timeline explicitly as well. Future trends of BTC and ETH are found to be relatively easier to predict, while USDT is relatively difficult to predict.

Originality/value

The robustness of the proposed framework can be leveraged for practical trading and managing investment in crypto market. Empirical properties of the temporal dynamics of chosen cryptocurrencies provide deeper insights.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 15 October 2021

Paulthurai Rajesh, Francis H. Shajin and Kumar Cherukupalli

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Abstract

Purpose

The purpose of this paper is to track the maximal power of wind energy conversion system (WECS) and enhance the search capability for WECS maximum power point tracking (MPPT).

Design/methodology/approach

The hybrid technique is the combination of tunicate swarm algorithm (TSA) and radial basis function neural network.

Findings

TSA gets input parameters from the rectifier outputs such as rectifier direct current (DC) voltage, DC current and time. From the input parameters, it enhances the reduced fault power of rectifier and generates training data set based on the MPPT conditions. The training data set is used in radial basis function. During the execution time, it produces the rectifier reference DC side voltage that is converted to control pulses of inverter switches.

Originality/value

Finally, the proposed method is executed in MATLAB/Simulink site, and the performance is compared with different existing methods like particle swarm optimization algorithm and hill climb searching technique. Then the output illustrates the performance of the proposed method and confirms its capability to solve issues.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 February 2024

Nehal Elshaboury, Tarek Zayed and Eslam Mohammed Abdelkader

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective…

Abstract

Purpose

Water pipes degrade over time for a variety of pipe-related, soil-related, operational, and environmental factors. Hence, municipalities are necessitated to implement effective maintenance and rehabilitation strategies for water pipes based on reliable deterioration models and cost-effective inspection programs. In the light of foregoing, the paramount objective of this research study is to develop condition assessment and deterioration prediction models for saltwater pipes in Hong Kong.

Design/methodology/approach

As a perquisite to the development of condition assessment models, spherical fuzzy analytic hierarchy process (SFAHP) is harnessed to analyze the relative importance weights of deterioration factors. Afterward, the relative importance weights of deterioration factors coupled with their effective values are leveraged using the measurement of alternatives and ranking according to the compromise solution (MARCOS) algorithm to analyze the performance condition of water pipes. A condition rating system is then designed counting on the generalized entropy-based probabilistic fuzzy C means (GEPFCM) algorithm. A set of fourth order multiple regression functions are constructed to capture the degradation trends in condition of pipelines overtime covering their disparate characteristics.

Findings

Analytical results demonstrated that the top five influential deterioration factors comprise age, material, traffic, soil corrosivity and material. In addition, it was derived that developed deterioration models accomplished correlation coefficient, mean absolute error and root mean squared error of 0.8, 1.33 and 1.39, respectively.

Originality/value

It can be argued that generated deterioration models can assist municipalities in formulating accurate and cost-effective maintenance, repair and rehabilitation programs.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 47