Search results

1 – 10 of over 1000
Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 6 March 2019

Saleeshya P.G. and Binu M.

Lean implementation is a strategic decision. The capacity of organisation to be “Lean” can be identified before lean implementation by assessing leanness of an organisation. This…

Abstract

Purpose

Lean implementation is a strategic decision. The capacity of organisation to be “Lean” can be identified before lean implementation by assessing leanness of an organisation. This study aims to attempt developing a holistic leanness assessment tool for assessing organisational leanness.

Design/methodology/approach

A neuro-fuzzy leanness assessment model for assessing the leanness of a manufacturing system is presented. The model is validated academically and industrially by conducting a case study.

Findings

Neuro-fuzzy hybridisation helped assess the leanness accurately. Fuzzy logic helped to perform the leanness assessment more realistically by accounting ambiguity and vagueness in organisational functioning and decision-making processes. Neural network increased the learning capacity of assessment model and increased the accuracy of leanness index.

Research limitations/implications

The industrial case study in the paper shows the results in telecom equipment manufacturing industry. This may not represent entire manufacturing sector. The generic nature of the model developed in this research ensures its wide applicability.

Practical implications

The neuro-fuzzy hybrid model for assessing leanness helps to identify the potential of an organisation to become “Lean”. The organisational leanness index developed by the study helps to monitor the effectiveness and impact of lean implementation programmes.

Originality/value

The leanness assessment models available in literature lack depth and coverage of leanness parameters. The model developed in this research assesses leanness of an organisation by accounting for leanness aspects of inventory management, industrial scheduling, organisational flexibility, ergonomics, product, process, management, workforce, supplier relationship and customer relationship with the help of neuro-fuzzy hybrid modelling.

Details

International Journal of Lean Six Sigma, vol. 10 no. 1
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 8 August 2022

Sitsofe Kwame Yevu, Ann Tit Wan Yu, Amos Darko, Gabriel Nani and David J. Edwards

This study aims to investigate the dynamic influences of clustered barriers that hinder electronic procurement technology (EPT) implementation in construction procurement, using…

Abstract

Purpose

This study aims to investigate the dynamic influences of clustered barriers that hinder electronic procurement technology (EPT) implementation in construction procurement, using the neuro-fuzzy system.

Design/methodology/approach

A comprehensive literature review was conducted and 21 barriers to EPT implementation within construction projects were identified. Based on an expert survey, 121 datasets were gathered for this study. Using mean and normalization analysis for the datasets, 15 out of the 21 barriers were deemed to have critical influences in EPT barriers phenomenon. Subsequently, the critical barriers were classified into five groups: human-related; technological risk-related; government-related; industry growth-related; and financial-related. The relationships and influence patterns between the groups of barriers to EPT implementation were analyzed using the neuro-fuzzy system. Furthermore, sensitivity analysis was performed to examine the dynamic influence levels of the barriers within the hindrance level composition.

Findings

The results reveal that addressing one barrier group does not reduce the high levels of hindrances experienced in EPT implementation. However, addressing at least two barrier groups mostly tends to reduce the hindrance levels for EPT implementation. Further, this study revealed that addressing some barrier group pairings, such as technological risk-related and government-related barriers, while other barrier groups remained at a high level, still resulted in high levels of hindrances to EPT implementation in construction procurement.

Research limitations/implications

This study provides insights for researchers to help them contribute to the development of theory with contemporary approaches based on the influence patterns of barrier interrelationships.

Practical implications

This study provides a model that would help practitioners and decision makers in construction procurement to understand and effectively determine the complex and dynamic influences of barrier groups to EPT uptake, for the development of suitable mitigation strategies.

Originality/value

This study provides novel insights into the complex influence patterns among grouped barriers concerning EPT adoption in the construction industry. Researchers and practitioners are equipped with knowledge on the influence patterns of barriers. This knowledge aids the development of effective strategies that mitigate the combined groups of barriers, and promote the wider implementation of EPT in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 August 2007

Tomasz Pajchrowski, Krzysztof Zawirski and Stefan Brock

The purpose of the paper is to find a simple structure of speed controller robust against drive parameter variations. Application of neurofuzzy technique in the controller of PI…

Abstract

Purpose

The purpose of the paper is to find a simple structure of speed controller robust against drive parameter variations. Application of neurofuzzy technique in the controller of PI type creates proper nonlinear characteristics, which ensures controller robustness.

Design/methodology/approach

The robustness of the controller is based on its nonlinear characteristic introduced by neurofuzzy technique. The paper proposes a novel approach to neural controller synthesis to be performed in two stages. The first stage consists in training the neurofuzzy system to form the proper shape of the control surface, which represents the nonlinear characteristic of the controller. At the second stage, the PI controller settings are adjusted by means of the random weight change procedure, which optimises the control quality index formulated in the paper. The synthesis is performed using simulation techniques and subsequently the behavior of a laboratory speed control system is validated in the experimental setup. The control algorithms of the system are performed by a microprocessor floating point DSP control system.

Findings

The proposed controller structure with proper control surface created by the neurofuzzy technique guarantees expected robustness.

Research limitations/implications

The proposed controller was tested on a single machine under well defined conditions. Further investigations are required before any industrial applications can be made.

Practical implications

The proposed controller synthesis and its results may be very helpful in the robotic system where changing of system parameters is characteristic for many industrial robots and manipulators.

Originality/value

The original method of robust controller synthesis was proposed and validated by simulation and experimental investigations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

Jiju Antony, Raj Bardhan Anand, Maneesh Kumar and M.K. Tiwari

To provide a good insight into solving a multi‐response optimization problem using neurofuzzy model and Taguchi method of experimental design.

2201

Abstract

Purpose

To provide a good insight into solving a multi‐response optimization problem using neurofuzzy model and Taguchi method of experimental design.

Design/methodology/approach

Over the last few years in many manufacturing organizations, multiple response optimization problems were resolved using the past experience and engineering judgment, which leads to increase in uncertainty during the decision‐making process. In this paper, a four‐step procedure is proposed to resolve the parameter design problem involving multiple responses. This approach employs the advantage of both artificial intelligence tool (neurofuzzy model) and Taguchi method of experimental design to tackle problems involving multiple responses optimization.

Findings

The proposed methodology is validated by revisiting a case study to optimize the three responses for a double‐sided surface mount technology of an electronic assembly. Multiple signal‐to‐noise ratios are mapped into a single performance statistic through neurofuzzy based model, to identify the optimal level settings for each parameter. Analysis of variance is finally performed to identify parameters significant to the process.

Research limitations/implications

The proposed model will be validated in future by conducting a real life case study, where multiple responses need to be optimized simultaneously.

Practical implications

It is believed that the proposed procedure in this study can resolve a complex parameter design problem with multiple responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready‐made neural and statistical software like Neuro Work II professional and Minitab.

Originality/value

This study adds to the literature of multi‐optimization problem, where a combination of the neurofuzzy model and Taguchi method is utilized hand‐in‐hand.

Details

Journal of Manufacturing Technology Management, vol. 17 no. 7
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 25 January 2018

Hima Bindu and Manjunathachari K.

This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial…

Abstract

Purpose

This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial recognition (FR) systems play a vital part in several applications such as surveillance, access control and image understanding. Accordingly, various face recognition methods have been developed in the literature, but the applicability of these algorithms is restricted because of unsatisfied accuracy. So, the improvement of face recognition is significantly important for the current trend.

Design/methodology/approach

This paper proposes a face recognition system through feature extraction and classification. The proposed model extracts the local and the global feature of the image. The local features of the image are extracted using the kernel based scale invariant feature transform (K-SIFT) model and the global features are extracted using the proposed m-Co-HOG model. (Co-HOG: co-occurrence histograms of oriented gradients) The proposed m-Co-HOG model has the properties of the Co-HOG algorithm. The feature vector database contains combined local and the global feature vectors derived using the K-SIFT model and the proposed m-Co-HOG algorithm. This paper proposes a probabilistic neuro-fuzzy classifier system for the finding the identity of the person from the extracted feature vector database.

Findings

The face images required for the simulation of the proposed work are taken from the CVL database. The simulation considers a total of 114 persons form the CVL database. From the results, it is evident that the proposed model has outperformed the existing models with an improved accuracy of 0.98. The false acceptance rate (FAR) and false rejection rate (FRR) values of the proposed model have a low value of 0.01.

Originality/value

This paper proposes a face recognition system with proposed m-Co-HOG vector and the hybrid neuro-fuzzy classifier. Feature extraction was based on the proposed m-Co-HOG vector for extracting the global features and the existing K-SIFT model for extracting the local features from the face images. The proposed m-Co-HOG vector utilizes the existing Co-HOG model for feature extraction, along with a new color gradient decomposition method. The major advantage of the proposed m-Co-HOG vector is that it utilizes the color features of the image along with other features during the histogram operation.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 October 2018

Anil Rana and Emosi V.M. Koroitamana

The purpose of this paper is to provide a framework for measuring the imprecise and subjective “effectiveness” of a major maintenance activity. Such a measure will not only bring…

Abstract

Purpose

The purpose of this paper is to provide a framework for measuring the imprecise and subjective “effectiveness” of a major maintenance activity. Such a measure will not only bring objectivity in gauging the effectiveness of maintenance task carried out by the workforce without any intervention from an expert but also help in measuring the slow degradation of the performance of the concerned major equipment/system.

Design/methodology/approach

The paper follows a three-step approach. First, identify a set of parameters considered important for estimating the maintenance activity effectiveness. Second, generate a set of data using expert opinions on a fuzzy performance measure of maintenance activity effectiveness (output). Also, find an aggregated estimate of the effectiveness by analysing the consensus among experts. This requires using a part of the “fuzzy multiple attribute decision making” process. Finally, train a neuro-fuzzy inference system based on input parameters and generated output data.

Findings

The paper analysed major maintenance activity carried out on diesel engines of a power plant company. Expert opinions were used in selection of key parameters and generation of output (effectiveness measure). The result of a trained adaptive neuro-fuzzy inference system (ANFIS) matched acceptably well with that aggregated through the expert opinions.

Research limitations/implications

In view of unavailability of data, the method relies on training a neuro-fuzzy system on data generated through expert opinion. The data as such are vague and imprecise leading to lack of consensus between experts. This can lead to some amount of error in the output generated through ANFIS.

Originality/value

The originality of the paper lies in presentation of a method to estimate the effectiveness of a maintenance activity.

Details

Journal of Quality in Maintenance Engineering, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 1 July 2006

Ajith Abraham, Sonja Petrovic‐Lazarevic and Ken Coghill

This paper aims to propose a novel computational framework called EvoPOL (EVOlving POLicies) to support governmental policy analysis in restricting recruitment of smokers. EvoPOL…

Abstract

Purpose

This paper aims to propose a novel computational framework called EvoPOL (EVOlving POLicies) to support governmental policy analysis in restricting recruitment of smokers. EvoPOL is a fuzzy inference‐based decision support system that uses an evolutionary algorithm (EA) to optimize the if‐then rules and its parameters. The performance of the proposed method is compared with a fuzzy inference method adapted using neural network learning technique (neurofuzzy).

Design/methodology/approach

EA is a population‐based adaptive method, which may be used to solve optimization problems, based on the genetic processes of biological organisms. The Takagi‐Sugeno fuzzy decision support system was developed based on three sub‐systems: fuzzification, fuzzy knowledge base (if‐then rules) and defuzzification. The fine‐tuning of the fuzzy rule base and membership function parameters is achieved by using an EA.

Findings

The proposed EvoPOL technique is simple and efficient when compared to the neurofuzzy approach. However, EvoPOL attracts extra computational cost due to the population‐based hierarchical search process. When compared to neurofuzzy model the error values on the test sets have improved considerably. Hence, when policy makers require more accuracy EvoPOL seems to be a good solution.

Originality/value

When policy makers require more accuracy EvoPOL seems to be a good solution. For complicated decision support systems involving more input variables, EvoPOL would be an excellent candidate for framing if‐then rules with precise decision scores that could help the government representatives as to what extent to concentrate on available social regulation measures in restricting the recruitment of smokers.

Details

Kybernetes, vol. 35 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 June 2017

Shabia Shabir Khan and S.M.K. Quadri

As far as the treatment of most complex issues in the design is concerned, approaches based on classical artificial intelligence are inferior compared to the ones based on…

Abstract

Purpose

As far as the treatment of most complex issues in the design is concerned, approaches based on classical artificial intelligence are inferior compared to the ones based on computational intelligence, particularly this involves dealing with vagueness, multi-objectivity and good amount of possible solutions. In practical applications, computational techniques have given best results and the research in this field is continuously growing. The purpose of this paper is to search for a general and effective intelligent tool for prediction of patient survival after surgery. The present study involves the construction of such intelligent computational models using different configurations, including data partitioning techniques that have been experimentally evaluated by applying them over realistic medical data set for the prediction of survival in pancreatic cancer patients.

Design/methodology/approach

On the basis of the experiments and research performed over the data belonging to various fields using different intelligent tools, the authors infer that combining or integrating the qualification aspects of fuzzy inference system and quantification aspects of artificial neural network can prove an efficient and better model for prediction. The authors have constructed three soft computing-based adaptive neuro-fuzzy inference system (ANFIS) models with different configurations and data partitioning techniques with an aim to search capable predictive tools that could deal with nonlinear and complex data. After evaluating the models over three shuffles of data (training set, test set and full set), the performances were compared in order to find the best design for prediction of patient survival after surgery. The construction and implementation of models have been performed using MATLAB simulator.

Findings

On applying the hybrid intelligent neuro-fuzzy models with different configurations, the authors were able to find its advantage in predicting the survival of patients with pancreatic cancer. Experimental results and comparison between the constructed models conclude that ANFIS with Fuzzy C-means (FCM) partitioning model provides better accuracy in predicting the class with lowest mean square error (MSE) value. Apart from MSE value, other evaluation measure values for FCM partitioning prove to be better than the rest of the models. Therefore, the results demonstrate that the model can be applied to other biomedicine and engineering fields dealing with different complex issues related to imprecision and uncertainty.

Originality/value

The originality of paper includes framework showing two-way flow for fuzzy system construction which is further used by the authors in designing the three simulation models with different configurations, including the partitioning methods for prediction of patient survival after surgery. Several experiments were carried out using different shuffles of data to validate the parameters of the model. The performances of the models were compared using various evaluation measures such as MSE.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 June 2007

Jui‐Lin Wang, Chien‐Ta Ho, Chin‐Shien Lin and Shihyu Chou

This research, based on the idea of contingency fit, attempts to construct a strategic selection system to select the best fit competency of channel strategic selection by using…

1394

Abstract

Purpose

This research, based on the idea of contingency fit, attempts to construct a strategic selection system to select the best fit competency of channel strategic selection by using neurofuzzy technique.

Design/methodology/approach

Neurofuzzy technique is used.

Findings

In addition to, providing a concrete bilateral solution to select the right and better fit competency of channel strategy and giving an alternative way to explain fit, this strategic selection system can also be used as a competency diagnosis system for channel members in the supply chain organization, providing clues for further channel performance promotion and channel modernization.

Originality/value

Through the literature and construction of strategy channel satisfaction model (SCSM) concepts and ideas, an empirical study of the Asian Commerce Community meet distribution channel relationships will pose an Asian developed channel modernization perspective of SCSM to discuss the critical marketing strategy selection for the traditional orient “commercial channel”.

Details

Benchmarking: An International Journal, vol. 14 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of over 1000