Search results

1 – 10 of 744
Article
Publication date: 1 September 2013

Laura Aelenei, Daniel Aelenei, Helder Gonçalves, Roberto Lollini, Eike Musall, Alessandra Scognamiglio, Eduard Cubi and Massa Noguchi

Net Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns about energy supply constraints, decreasing energy resources…

Abstract

Net Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns about energy supply constraints, decreasing energy resources, increasing energy costs and the rising impact of greenhouse gases on world climate. Promoting whole building strategies that employ passive measures together with energy efficient systems and technologies using renewable energy became a European political strategy following the publication of the Energy Performance of Buildings Directive recast in May 2010 by the European Parliament and Council. However designing successful NZEBs represents a challenge because the definitions are somewhat generic while assessment methods and monitoring approaches remain under development and the literature is relatively scarce about the best sets of solutions for different typologies and climates likely to deliver an actual and reliable performance in terms of energy balance (consumed vs generated) on a cost-effective basis. Additionally the lessons learned from existing NZEB examples are relatively scarce. The authors of this paper, who are participants in the IEA SHC Task 40-ECBCS Annex 52, “Towards Net Zero Energy Solar Buildings”, are willing to share insights from on-going research work on some best practice leading NZEB residential buildings. Although there is no standard approach for designing a Net Zero-Energy Building (there are many different possible combinations of passive and efficient active measures, utility equipment and on-site energy generation technologies able to achieve the net-zero energy performance), a close examination of the chosen strategies and the relative performance indicators of the selected case studies reveal that it is possible to achieve zero-energy performance using well known strategies adjusted so as to balance climate driven-demand for space heating/cooling, lighting, ventilation and other energy uses with climate-driven supply from renewable energy resources.

Details

Open House International, vol. 38 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 September 2008

Rémi Charron

In recent years, there have been a growing number of projects and initiatives to promote the development and market introduction of low and net-zero energy solar homes and…

Abstract

In recent years, there have been a growing number of projects and initiatives to promote the development and market introduction of low and net-zero energy solar homes and communities. These projects integrate active solar technologies to highly efficient houses to achieve very low levels of net-energy consumption. Although a reduction in the energy use of residential buildings can be achieved by relatively simple individual measures, to achieve very high levels of energy savings on a cost effective basis requires the coherent application of several measures, which together optimise the performance of the complete building system. This article examines the design process used to achieve high levels of energy performance in residential buildings. It examines the current design processes for houses used in a number of international initiatives. The research explores how building designs are optimised within the current design processes and discusses how the application of computerised optimisation techniques would provide architects, home-builders, and engineers with a powerful design tool for low and net-zero energy solar buildings.

Details

Open House International, vol. 33 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 15 July 2022

Ruchi Mishra, Rajesh Singh and Kannan Govindan

The purpose of this study is to systematically review the state-of-art literature on the net-zero economy in the field of supply chain management.

2900

Abstract

Purpose

The purpose of this study is to systematically review the state-of-art literature on the net-zero economy in the field of supply chain management.

Design/methodology/approach

A systematic literature review of 79 articles published from 2009 to 2021 has been conducted to minimise the researchers' bias and maximise the reliability and replicability of the study.

Findings

The thematic analysis reveals that studies in the field of net-zero economy have mostly been done on decarbonisation in the supply chain, emission control and life cycle analysis and environmental and energy management. The findings highlight the strong positive association between digitalisation, circular economy and resources optimization practices with net-zero economy goals. The study also addresses the challenges linked with the net-zero economy at the firm and country levels.

Research limitations/implications

Practitioners in companies and academics might find this review valuable as this study reviews, classifies and analyses the studies, outlines the evolution of literature and offers directions for future studies using the theory, methodology and context (TMC) framework.

Originality/value

This is the first study that uses a structured approach to analyse studies done in the net-zero field by assessing publications from 2009 to 2021.

Details

The International Journal of Logistics Management, vol. 34 no. 5
Type: Research Article
ISSN: 0957-4093

Keywords

Book part
Publication date: 6 September 2023

Elaine Conway and Yousuf Kamal

This chapter discusses the global challenge to reduce greenhouse gas (GHGs) emissions to net zero by 2050. It explains what net zero means and how it is calculated, together with…

Abstract

This chapter discusses the global challenge to reduce greenhouse gas (GHGs) emissions to net zero by 2050. It explains what net zero means and how it is calculated, together with some of the debate around the suitability of the target to maintain global warming levels within ‘acceptable’ boundaries. The chapter then presents some of the opportunities and challenges that transitioning towards net zero will pose to countries and their inhabitants, in terms of changes to policies, products, processes and behaviours that will be required to attain the target. It then discusses the need for a strategy to achieve net zero across different sectors of society and provides a few suggestions of tools and concepts that could be adopted to support the changes necessary, such as planning for change, the Sustainable Development Goals (SDGs), integrated reporting and the circular economy. The chapter concludes with a reflection on the need for the net zero target and how it is our collective responsibility to support the challenging transition to net zero for the benefit of all.

Article
Publication date: 11 November 2020

Md. Jewel Rana, Md. Rakibul Hasan, Md. Habibur Rahman Sobuz and Norsuzailina Mohamed Sutan

This study investigates the impact and economic viability of energy-efficient building envelope and orientation for contributing net zero energy building (NZEB) and suggests…

Abstract

Purpose

This study investigates the impact and economic viability of energy-efficient building envelope and orientation for contributing net zero energy building (NZEB) and suggests optimum thermal insulation thickness, optimum wall thickness, appropriate orientation and glazing types of window in the contexts of unique Bangladeshi subtropical monsoon climate.

Design/methodology/approach

The whole study was conducted through energy simulation perspective of an existing office building using building information modeling (BIM) and building energy modeling (BEM) tools which are Autodesk Revit 2017, Autodesk Green Building Studio (GBS) and eQUEST. Numerous simulation patterns were created for energy simulation considering building envelope parameters and orientations. A comprehensive data analysis of simulation results was conducted to sort out efficient passive design strategies.

Findings

The optimum thermal mass and thermal insulation thickness are 6.5 and 0.5 inches, respectively, considering energy performance and economic viability. This study highly recommends that a building should be designed with a small window-to-wall ratio in the south and west face. The window should be constructed with double glazing Low-E materials to reduce solar heat gain. The studied building saves 9.14% annual energy consumption by incorporating the suggested passive design strategies of this study.

Originality/value

The output of this work can add some new energy-efficient design strategies to Bangladesh National Building Code (BNBC) because BNBC has not suggested any codes or regulations regarding energy-efficient passive design strategies. It will also be useful to designers of Bangladesh and other countries with similar subtropical climatic contexts which are located in Southeast Asia and Northern Hemisphere of Earth.

Details

International Journal of Building Pathology and Adaptation, vol. 39 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 September 2021

Seyed Sajad Rezaei Nasab, Abbasali Tayefi Nasrabadi, Somayeh Asadi and Seiyed Ali Haj Seiyed Taghia

Due to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings

Abstract

Purpose

Due to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings (NZEBs). However, to achieve more dependable results, proper energy analysis is needed to take into consideration the stochastic behavior of renewable energy, energy consumption in the building and vehicle use pattern. This study aims to stochastically model a building integrating photovoltaic panels as a microgeneration technology and EVs to meet NZEB requirements.

Design/methodology/approach

First, a multiobjective nondominated sorting genetic algorithm (NSGA-II) was developed to optimize the building energy performance considering panels installed on the façade. Next, a dynamic solution is implemented in MATLAB to stochastically model electricity generation using solar panels as well as building and EV energy consumption. Besides, the Monte Carlo simulation method is used for quantifying the uncertainty of NZEB performance. To investigate the impact of weather on both energy consumption and generation, the model is tested in five different climatic zones in Iran.

Findings

The results show that the stochastic simulation provides building designers with a variety of convenient options to select the best design based on level of confidence and desired budget. Furthermore, economic evaluation signifies that investing in all studied cities is profitable.

Originality/value

Considering the uncertainty in building energy demand and PV power generation as well as EV mobility and the charging–discharging power profile for evaluating building energy performance is the main contribution of this study.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 July 2023

Omprakash Ramalingam Rethnam and Albert Thomas

The building sector contributes one-third of the energy-related carbon dioxide globally. Therefore, framing appropriate energy-related policies for the next decades becomes…

Abstract

Purpose

The building sector contributes one-third of the energy-related carbon dioxide globally. Therefore, framing appropriate energy-related policies for the next decades becomes essential in this scenario to realize the global net-zero goals. The purpose of the proposed study is to evaluate the impact of the widespread adoption of such guidelines in a building community in the context of mixed-mode buildings.

Design/methodology/approach

This study decentralizes the theme of improving the energy efficiency of the national building stock in parcels by proposing a community-based hybrid bottom-up modelling approach using urban building energy modelling (UBEM) techniques to analyze the effectiveness of the community-wide implementation of energy conservation guidelines.

Findings

In this study, the UBEM is developed and validated for the 14-building residential community in Mumbai, India, adopting the framework. Employing Energy Conservation Building Code (ECBC) compliance on the UBEM shows an energy use reduction potential of up to 15%. The results also reveal that ECBC compliance is more advantageous considering the effects of climate change.

Originality/value

In developing countries where the availability of existing building stock information is minimal, the proposed study formulates a holistic framework for developing a detailed UBEM for the residential building stock from scratch. A unique method of assessing the actual cooling load of the developed UBEM is presented. A thorough sensitivity analysis approach to investigate the effect of cooling space fraction on the energy consumption of the building stock is presented, which would assist in choosing the appropriate retrofit strategies. The proposed study's outcomes can significantly transform the formulation and validation of appropriate energy policies.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 10 April 2019

Rikard Sundling, Stefan Olander, Petter Wallentén, Stephen Burke, Ricardo Bernardo and Åke Blomsterberg

The purpose of this paper is to identify appropriate concepts of multi-active façades for the renovation of multifamily buildings in Sweden and to determine which, if any, are…

Abstract

Purpose

The purpose of this paper is to identify appropriate concepts of multi-active façades for the renovation of multifamily buildings in Sweden and to determine which, if any, are financially viable.

Design/methodology/approach

A lifecycle profit (LCP) analysis was used to examine financial viability through a ten-step process, which included identifying concepts, assessing costs and prices, calculating the LCP and performing sensitivity analysis. Two existing buildings – one low rise and the other high rise – were used as reference models.

Findings

The findings were contradictory. Implementing any of the multi-active façade concepts on the high-rise building would be financially beneficial. The opposite was, however, the case for the low-rise building. Two factors causing this contradiction have been identified: the façade material before renovation and the size of the building.

Research limitations/implications

The study is limited to two case buildings situated in Sweden; however, similar buildings represent a significant amount of the existing building stock. Part of the purpose of the study is also to investigate the merits of LCP analysis to evaluate energy-efficient retrofitting. The study implicates the benefits and pitfalls of LCP analysis needed to be considered by researchers and practitioners alike.

Originality/value

The research findings contribute to the understanding of energy-efficient retrofitting of existing multifamily buildings based on prefabricated multi-active façade concepts.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Abstract

Details

Integrated Management
Type: Book
ISBN: 978-1-78714-561-0

Article
Publication date: 26 March 2024

Rohit Kumar Singh and Sachin Modgil

The main aim of this study is to explore the relationship between information system flexibility and dynamic capabilities to build sustainable and net zero supply chains under the…

Abstract

Purpose

The main aim of this study is to explore the relationship between information system flexibility and dynamic capabilities to build sustainable and net zero supply chains under the influence of environmental dynamism.

Design/methodology/approach

We have formulated a self-administered survey, with 359 participants contributing responses. Prior to delving into foundational assumptions, such as homoscedasticity and normality, a nonresponse bias analysis was executed. The integrity of the data, in terms of reliability and construct validity, was gauged using confirmatory factor analysis. Subsequent regression outputs corroborated all the proposed assumptions, fortifying the extant scholarly literature.

Findings

The empirical findings of this research underscore a positive correlation between Information system flexibility, dynamic capabilities and a net zero supply chain, especially in the context of environmental dynamism. Data sourced from the cement manufacturing sector support these observations. We also found that environmental dynamism moderates the relationship between data analytics capability and sustainable supply chain flexibility but does not moderate the relationship between Resource flexibility and sustainable supply chain flexibility. Additionally, this research strengthens the foundational principles of the dynamic capability theory.

Originality/value

The conceptual framework elucidates the interplay between information system flexibility, dynamic capabilities, and sustainable supply chain flexibility, emphasizing their collective contribution towards achieving sustainable chain net zero, introducing environmental dynamics as a moderating variable that augments the scholarly discourse with a nuanced layer of analytical depth.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

1 – 10 of 744