Search results

1 – 10 of 14
Article
Publication date: 17 May 2023

Chunling Liang, Ting Zou, Yan Zhang, Yuanyuan Li and Ping Wang

This paper aims to design a composite, aiming to improve the static puncture resistance through polyurethane impregnated treatment with five concentration gradients.

Abstract

Purpose

This paper aims to design a composite, aiming to improve the static puncture resistance through polyurethane impregnated treatment with five concentration gradients.

Design/methodology/approach

The relationship between polyurethane concentration, the number of polyester nonwovens, component fiber type (filament or staple) and the static puncture resistance is explored respectively and elaborately.

Findings

This study provides a new perspective to design flexible composites with better static puncture resistance, feasible preparation process as well as low cost.

Originality/value

The results show that the static puncture resistance of nonwovens impregnated by polyurethane is improved obviously. Meanwhile the puncture strength-T of nonwovens increases first and then decreases with the increase of the number of layers, and the maximum puncture strength-T is found at 20 layers. Moreover, the composite with filaments illustrates better mechanical resistance.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 June 2022

Mohammad Javad Jafari, Elham Akhlaghi Pirposhteh, Mohadese Farhangian, Soheila Khodakarim Ardakani, Elaheh Tavakol, Somayeh Farhang Dehghan and Amin Khalilinejad

The aim of this study is to optimize the electrospinning parameters used in the production process of polyvinyl chloride (PVC) nanofibers.

Abstract

Purpose

The aim of this study is to optimize the electrospinning parameters used in the production process of polyvinyl chloride (PVC) nanofibers.

Design/methodology/approach

The response surface methodology (RSM) was used to determine the experimental design. The 30 nanofiber prototypes candidates were electrospun using a needle-based electrospinning machine. PVC polymer, N-dimethyl formamide and tetrahydrofuran solvents were used to prepare the electrospinning solution.

Findings

The electrospun nanofibers had a mean diameter of 386 ± 136.57 nm, in the range of 200−412 nm. The mean porosity was 31.60 ± 6.37% in the range of 15.33−41.53%. The webs made from electrospun nanofibers had a mean pressure loss of 194.23 ± 47.7 pa in the range of 124−300 pa. The highest statistically significant correlation was observed between solution concentration and nanofiber diameter (r = 0.756, p < 0.05).

Originality/value

The optimal electrospinning parameters were determined to be: a solution concentration of 11 weight percent, a voltage of 16.5 kV, a needle-collector distance of 13.5 cm and an electrospinning duration of 4 h.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 May 2022

Dat Van Truong, Song Thanh Quynh Le and Huong Mai Bui

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to…

Abstract

Purpose

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to demonstrate the process of creating an oil-absorbent web from a blend of treated kapok and polypropylene fibers.

Design/methodology/approach

Kapok fibers were separated from dried fruits, then the wax was removed with an HCl solution at different concentrations. The morphological and structural changes of these fibers were investigated using scanning electron microscopy images. The blending ratios of kapok and polypropylene fibers were 60/40, 70/30 and 80/20, respectively. The fiber blends were fed to a laboratory carding machine to form a web and then consolidated using the heat press technique. The absorption behavior of the formed web was evaluated regarding oil absorption capacity and oil retention capacity according to ASTM 726.

Findings

The results showed that the HCl concentration of 1.0% (wt%) gave the highest wax removal efficiency without damaging the kapok fibers. This study found that oil absorbency is influenced by the fiber blending ratio, web tensile strength and elongation, porosity, oil type and environmental conditions. The oil-absorbency of the web can be re-used for at least 20 cycles.

Research limitations/implications

This study only looked at three types of oils: diesel, kerosene and vegetable oils.

Practical implications

When the problem of oil spills in rivers and seas is growing and causing serious environmental and economic consequences, using physical methods to recover oil spills is the most effective solution.

Originality/value

This research adds to the possibility of using kapok fiber in the form of a web of non-woven fabric for practical purposes.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 April 2024

Md. Ikramul Hoque, Muzamir Hasan and Shuvo Dip Datta

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which…

Abstract

Purpose

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which can improve the overall carrying capacity of soft clay as well as lessen the settlement of buildings built on it, is among the most widespread ground improvement techniques throughout the globe. The performance of foundation beds is enhanced by their stiffness values and higher strength, which could withstand more of the load applied. Stone dust is a wonderful source containing micronutrients for soil, particularly those derived from basalt, volcanic rock, granite and other related rocks. The aim of this paper is to evaluate the properties of soft clay reinforced with encapsulated stone dust columns to remediate problematic soil and obtain a more affordable and environmentally friendly way than using other materials.

Design/methodology/approach

In this study, the treated kaolin sample's shear strength was measured using the unconfined compression test (UCT). 28 batches of soil samples total, 12 batches of single stone dust columns measuring 10 mm in diameter and 12 batches of single stone dust columns measuring 16 mm in diameter. Four batches of control samples are also included. At heights of 60 mm, 80 mm and 100 mm, respectively, various stone dust column diameters were assessed. The real soil sample has a diameter of 50 mm and a height of 100 mm.

Findings

Test results show when kaolin is implanted with a single encased stone dust column that has an area replacement ratio of 10.24% and penetration ratios of 0.6, 0.8 and 1.0, the shear strength increase is 51.75%, 74.5% and 49.20%. The equivalent shear strength increases are 48.50%, 68.50% and 43.50% for soft soil treated with a 12.00% area replacement ratio and 0.6, 0.8 and 1.0 penetration ratios.

Originality/value

This study shows a comparison of how sample types affect shear strength. Also, this article provides argumentation behind the variation of soil strength obtained from different test types and gives recommendations for appropriate test methods for soft soil.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 May 2022

Sayed Gulzar Ganai, Javid Ahmad Khan and Showkat Ahmad Bhat

The export competitiveness has only calculated on only two aspects either comparatively advantageous or comparatively disadvantageous products for India or China. There is not any…

Abstract

Purpose

The export competitiveness has only calculated on only two aspects either comparatively advantageous or comparatively disadvantageous products for India or China. There is not any thorough study that has been undertaken for Indian manufacturing sector at a segregated level along with that of China. So, in the light of these shortcomings, the purpose of this study is to analyse the dynamics of export competitiveness of indian manufacturing sector vis-à-vis its emerging counterpart, china in the global market.

Design/methodology/approach

A modified revealed comparative advantage index has been used in two different phases of 2001–08 and 2010–18 to find the dynamic pattern of manufacturing exports of India and China in the world market.

Findings

The study revealed that India has shown a positive response in increasing its competitive positioned products from low-technology to medium-technology products during the study period. There has been a decline in the competitive positioned products of China and simultaneously China’s threatened product lines have shown an immense increment over the years. Moreover, Indian exports are concentrated to few low-technology and resource-intensive products, that share more than 50% of total exported value for its manufacturing in the global market, whereas, China is much diversified and the exported value is more scattered over its manufactured items.

Research limitations/implications

The study does not include the factors that impacted the export competitiveness of the sample economies and thus adds a limitation to this study.

Originality/value

As there is very limited research on dynamics of export competitiveness of Indian manufacturing exports at harmonised system 6-digit level with China, this study fulfils the gap.

Details

Competitiveness Review: An International Business Journal , vol. 33 no. 5
Type: Research Article
ISSN: 1059-5422

Keywords

Article
Publication date: 12 April 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims…

Abstract

Purpose

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims to boost abrasive wear resistance by incorporating TiO2 filler, promoting sustainable and eco-friendly materials.

Design/methodology/approach

This study fabricates epoxy/flax composites with TiO2 particles (0–8 wt%) using hand layup. Composites were tested for wear following American Society for Testing and Materials (ASTM) G99-05. Statistical analysis used Taguchi design of experiments (DOE), with ANOVA identifying key factors affecting SWR in abrasive sliding conditions.

Findings

The study illuminates how integrating TiO2 filler particles into epoxy/flax composites enhances abrasive wear properties. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, wt% of TiO2 and sliding distance. Grit size has the highest effect at 43.78%, and wt% TiO2 filler contributes 15.61% to SWR according to ANOVA. Notably, the Taguchi predictive model closely aligns with experimental results, validating its reliability.

Originality/value

This paper integrates TiO2 filler and flax fibers to form a novel hybrid composite with enhanced tribological properties in epoxy composites. The use of Taguchi DOE and ANOVA offers valuable insights for optimizing control variables, particularly in natural fiber-reinforced composites (NFRCs).

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 September 2023

A.I.H. Fayed, Y.A. Abo El Amaim, Ossama R. Abdelsalam and Doaa H. Elgohary

This paper aims to estimate the performance of protective clothing used to resist puncture (anti-stab property).

Abstract

Purpose

This paper aims to estimate the performance of protective clothing used to resist puncture (anti-stab property).

Design/methodology/approach

Seven single-layer (one layer) samples were investigated in this research. The first three samples were already used for the purpose of (anti-stab property), manufactured from Du-Pont product (commercial samples). The rest of the samples were locally designed and manufactured for the same purpose. These seven samples have then been examined after been added in conjunction with WL Kevlar XP (S 104) witness multilayers (eight layers) panel to create which are called multilayer samples.

Findings

The results of the statistical analysis for one-way ANOVA illustrated significant effect for single layer samples for all properties. While for multi-layer samples, the results showed a significant difference for all variables except displacement. The Tukey post hoc test observed a significant effect for some samples; also, other samples show a non-significant effect between samples.

Originality/value

It was observed that the locally manufactured samples serve the purpose as (anti-stab samples) compared with the commercial samples. The radar chart shows that for single-layer sample, the fifth sample fulfill the highest radar chart area, whereas for multi-layer samples, the sixth sample achieved the highest radar chart area.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 14