Search results

1 – 10 of 31
Article
Publication date: 5 February 2018

Ryutaro Fueki and Koji Takahashi

The purpose of this paper is to estimate the acceptable defect size amax after needle peening (NP) and predict the fatigue limit improvement through the use of NP for an…

Abstract

Purpose

The purpose of this paper is to estimate the acceptable defect size amax after needle peening (NP) and predict the fatigue limit improvement through the use of NP for an austenitic stainless steel welded joint containing an artificial semi-circular slit on a weld toe.

Design/methodology/approach

Residual stress and hardness distribution were measured. Microstructures around the weld toe were observed to clarify the cause for the change in hardness after NP. Finite element method analysis was used to analyze the change in the stress concentration following NP. Fracture mechanics was used to evaluate amax after NP. The fatigue limits before and after NP were predicted by determining amax for several levels of stress amplitude.

Findings

The tensile residual stress induced at the surface of the weld toe prior to NP changed to a compressive residual stress after NP. The residual stress near the surface layer after NP exceeded the yield stress prior to NP due to the increase in yield stress as a result of work hardening as well as the generation of a deformation-induced martensitic structure. The stress concentration was reduced due to the shape improvement caused by NP. The estimation value of amax after NP and the prediction results of fatigue limits were in good agreement with the fatigue test results.

Practical implications

The proposed method is useful in improving the reliability of welded joints used in large steel structures, transportation equipments and industrial machines.

Originality/value

From an engineering perspective, it is essential to estimate amax and the fatigue limit of welded joints with crack-like defects. However, it is unclear as to whether it is possible to predict amax and the effects of NP on the fatigue limit for stainless steel welded joints.

Details

International Journal of Structural Integrity, vol. 9 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 November 2014

Keiji Houjou, Koji Takahashi, Kotoji Ando and Hisanori Abe

– The purpose of this paper is to investigate the effect of peening on the fatigue limit of steels for welded structure with a crack in the weld toe zone.

Abstract

Purpose

The purpose of this paper is to investigate the effect of peening on the fatigue limit of steels for welded structure with a crack in the weld toe zone.

Design/methodology/approach

An artificial semi-circular slit was created in the weld toe, and peening was conducted. Then, bending fatigue tests were carried out.

Findings

First, owing to the shot peening, the maximum slit depths that can be rendered harmless were 1.0 and 1.2 mm in SUS316 and SM490, respectively. Second, during the fatigue test, the fracture of a peened specimen originated outside the slit, which indicated that peening eliminated the effect of the slit on the fatigue limit. Third, the fatigue limit of a slit specimen was improved by the enhanced residual stress distribution and the decreased stress concentration due to plastic deformation at the weld toe.

Originality/value

There are very few studies about which a fatigue crack is rendered harmless by residual compressive stress, as a result the structures could be continued to use. Moreover, the study defining the concept about rendering crack harmless and systematic investigation was not able to be found.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 August 1999

David Kirk

Discusses the use of a corporate Internet in a geographically‐spread consulting firm, James Martin & Co., to share ideas, vision, client information and results. Illustrates with…

1872

Abstract

Discusses the use of a corporate Internet in a geographically‐spread consulting firm, James Martin & Co., to share ideas, vision, client information and results. Illustrates with examples. Applications include a quarterly Employee Attitude Survey and regular discussion forums. Proposes that a well‐designed corporate intranet is a highly effective method of making intangible vision and mission pledges more tangible.

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 September 2021

Mahyar Khorasani, AmirHossein Ghasemi, Bernard Rolfe and Ian Gibson

Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight…

2175

Abstract

Purpose

Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight design, functional integration and rapid prototyping. In this paper, the authors show how AM can be implemented not only for prototyping but also production using different optimization approaches in design including topology optimization, support optimization and selection of part orientation and part consolidation. This paper aims to present how AM can reduce the production cost of complex components such as jet engine air manifold by optimizing the design. This case study also identifies a detailed feasibility analysis of the cost model for an air manifold of an Airbus jet engine using various strategies, such as computer numerical control machining, printing with standard support structures and support optimization.

Design/methodology/approach

Parameters that affect the production price of the air manifold such as machining, printing (process), feedstock, labor and post-processing costs were calculated and compared to find the best manufacturing strategy.

Findings

Results showed that AM can solve a range of problems and improve production by customization, rapid prototyping and geometrical freedom. This case study showed that 49%–58% of the cost is related to pre- and post-processing when using laser-based powder bed fusion to produce the air manifold. However, the cost of pre- and post-processing when using machining is 32%–35% of the total production costs. The results of this research can assist successful enterprises, such as aerospace, automotive and medical, in successfully turning toward AM technology.

Originality/value

Important factors such as validity, feasibility and limitations, pre-processing and monitoring, are discussed to show how a process chain can be controlled and run efficiently. Reproducibility of the process chain is debated to ensure the quality of mass production lines. Post-processing and qualification of the AM parts are also discussed to show how to satisfy the demands on standards (for surface quality and dimensional accuracy), safety, quality and certification. The original contribution of this paper is identifying the main production costs of complex components using both conventional and AM.

Details

Rapid Prototyping Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Joshua Gale and Ajit Achuhan

Additive manufacturing (AM) processes involve a layer-by-layer sintering of metallic powders to produce fully functional three-dimensional parts. This layer-by-layer building…

Abstract

Purpose

Additive manufacturing (AM) processes involve a layer-by-layer sintering of metallic powders to produce fully functional three-dimensional parts. This layer-by-layer building process provides a unique opportunity to enhance mechanical properties by applying treatments that previously were possible only on the surface in traditional manufacturing techniques. The purpose of the study is to examine the effect of ultrasonic peening (UP) applied during a layer-by-layer direct metal laser sintering (DMLS) fabrication of 316L stainless steel on its mechanical properties and microstructure.

Design/methodology/approach

Uniaxial tensile tests were performed at 1.27 mm/s to determine the effect of UP treatment on the average global behavior of a 316L part, whereas hardness measurements using nanoindentation were performed to determine the modification of local mechanical properties. Compressive buckling tests at a loading rate of 3 mm/min were performed on sample coupons with a large aspect ratio to evaluate the effect of UP on any potential delamination of DMLS layers. Techniques such as optical and scanning electron microscopy (SEM) imaging were utilized to determine the effect of UP on the microstructure.

Findings

Overall, significant modification in mechanical properties such as hardness and yield strength, along with microstructure, was observed. Large increases in both the average global and local mechanical properties, as well as a disruption in the columnar grain microstructure, was observed in DMLS parts treated with UP treatment.

Originality/value

Results indicate an opportunity for UP to be used as an in-situ process during AM processes for dynamically altering the mechanical behavior, microstructure, and distortion due to residual stress formation, in a tunable fashion.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 5 March 2010

Dan Spinner

164

Abstract

Details

International Journal of Structural Integrity, vol. 1 no. 1
Type: Research Article
ISSN: 1757-9864

Article
Publication date: 1 September 1972

On take‐off at sea level conditions, the burner section of the JT9D‐7 and‐15 engines reaches 2,350°F. In the Boeing 747 and McDonnell Douglas DC‐10, developing 45,500lb of thrust…

Abstract

On take‐off at sea level conditions, the burner section of the JT9D‐7 and‐15 engines reaches 2,350°F. In the Boeing 747 and McDonnell Douglas DC‐10, developing 45,500lb of thrust, the turbine blades need to be kept at some 500° cooler at 1,850°F, to preserve the metal. Two per cent of the total engine airflow streams at a rate of 51b/scc through 2,900 needle thin holes which have to be bored in the baffles.

Details

Aircraft Engineering and Aerospace Technology, vol. 44 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1939

ONE of the objections attendant on the use of needle roller bearings, as illustrated in Fig. 1, has been overcome by the introduction of needle rollers having trunnion instead of…

Abstract

ONE of the objections attendant on the use of needle roller bearings, as illustrated in Fig. 1, has been overcome by the introduction of needle rollers having trunnion instead of spherical ends. In the type shown in Fig. 1, without adding considerably to the cost of the bearing, it is only with difficulty that the rollers can be kept in position during the process of fitting, whereas with the design illustrated in Fig. 2, by the employment of rollers having trunnion ends, they can be readily retained in the outer ring by means of pressings fitted into the bore of the shoulders, thus enabling the outer ring and rollers to be handled as a single unit during fitting.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 23 October 2020

Jiaqiang Chen

The main supporting frame of steel structure buildings is steel, and the beam-column joints of the steel structure directly affect the stability and strength of the supporting…

Abstract

Purpose

The main supporting frame of steel structure buildings is steel, and the beam-column joints of the steel structure directly affect the stability and strength of the supporting frame.

Design/methodology/approach

This paper briefly introduced the beam-column joints which are used for ensuring the stability of buildings in the steel structure building, selected the fabricated beam-column joints which were different from the traditional welding methods, tested the fabricated beam-column joints with the reaction frame and jack and detected the influence of the thickness and length of the splice plate on the mechanical properties of joints.

Findings

The results showed that the joint stress and the displacement in the vertical direction increased under greater load no matter which kind of fabricated joint was used; under the same load, the thickness and length of the splice significantly affected the mechanical properties of joints, and the larger the thickness and length, the smaller the joint stress and displacement in the vertical direction.

Originality/value

To sum up, increasing the thickness or length of the splice plate of the fabricated joint can effectively improve the mechanical properties of joints.

Details

International Journal of Building Pathology and Adaptation, vol. 39 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 January 1989

THE Belgian aerospace company, SABCA, which manufactures a number of components under licence for Aerospatiale's ‘Ariane’ programme, is using a special peen‐forming technique for…

Abstract

THE Belgian aerospace company, SABCA, which manufactures a number of components under licence for Aerospatiale's ‘Ariane’ programme, is using a special peen‐forming technique for the accurate shaping of the external housings of the liquid fuel boosters (P.A.L.) fitted to Ariane IV.

Details

Aircraft Engineering and Aerospace Technology, vol. 61 no. 1
Type: Research Article
ISSN: 0002-2667

1 – 10 of 31