Search results

1 – 10 of 511
Article
Publication date: 8 May 2018

Awadhesh Kumar Choudhary, Monica Puri Sikka and Payal Bansal

The purpose of this review paper is to define the dominating factors (such as fiber, yarn, fabric structure, sewing thread, sewing needle and machine parameters) that affect the…

Abstract

Purpose

The purpose of this review paper is to define the dominating factors (such as fiber, yarn, fabric structure, sewing thread, sewing needle and machine parameters) that affect the seam damages and causing defects. It also describes the various explanations of sewing defects in garment production and critically analyzes them for optimum selection of parameters and speeds for minimizing such faults. Hence, the knowledge of various factors which affect the sewing damages/defects will be helpful for garment manufacturers/researchers to know influence of the parameters and control the quality of producing seam.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Sewing damages such as needle cut and other sewing damages/defects are studied mostly in woven fabric. There are very few studies conducted on knitted fabric sewing damages/defects. The sewing damage problems do not have single solution that is capable of removing these damages in fabric. All the determined and affecting parameters related to fiber, yarn, fabric construction, sewing thread and sewing machine must be examined to design appropriate remedial measurement related to machine design, fabric parameters and sewing thread. This could help in minimizing or eliminating the needle cut and other sewing damage problems.

Originality/value

It is an original review work and is helpful for garment manufacturers/researchers to reduce the defects and be able to produce good quality seam.

Details

Research Journal of Textile and Apparel, vol. 22 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 May 1997

B.K. Behera, S. Chand, T.G. Singh and P. Rathee

Denim fabrics of various weight ranges were sewn with three different compositions of sewing threads ‐ 100 per cent cotton, 100 per cent polyester and corespun thread ‐ with all…

1261

Abstract

Denim fabrics of various weight ranges were sewn with three different compositions of sewing threads ‐ 100 per cent cotton, 100 per cent polyester and corespun thread ‐ with all possible ticket numbers, to examine the interaction of various fabric‐thread combinations. The sewing thread performance in terms of seam efficiency, pucker, slippage and needle cutting index was determined and the results were analysed in the light of the dimensional and mechanical properties of the fabric, thread and seam itself. Corespun threads were found to be most suitable from a seam efficiency point of view. However, other sewing parameters such as pucker, slippage and damage were adversely affected by sewing with corespun threads. Tensile properties of fabrics and threads were found to be the most important factors for sewability. Breaking strength and elongation of the fabric and sewing thread had an excellent correlation with seam efficiency. Cotton threads were found to be most suitable for sewing denim from a seam puckering point of view. On the other hand, polyester threads were more prone to develop seam pucker. Corespun thread was the greatest yarn damager compared to cotton and polyester threads. Fabric cover factor and sewing thread diameter were highly correlated with the needle cutting index.

Details

International Journal of Clothing Science and Technology, vol. 9 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 May 2022

Esra Zeynep Yıldız and Oktay Pamuk

This paper suggests a new method for determining the sewing damage that occurs in single jersey fabrics based on the calculation of the needle hole area. This paper also aims to…

Abstract

Purpose

This paper suggests a new method for determining the sewing damage that occurs in single jersey fabrics based on the calculation of the needle hole area. This paper also aims to investigate the effects of material type, sewing parameters, and repeated washing cycles on sewing damage by using this method.

Design/methodology/approach

Six knitted fabrics, differing in structure and raw material, were produced. Samples were sewn using different sewing parameters, and they were subjected to ten washing cycles. Values of average needle hole area, an objective indicator of sewing damage, were calculated before and after repeated washing cycles using image analysis software and were evaluated statistically.

Findings

The results showed that the average needle hole area calculated via the image analysis software effectively estimates sewing damage as the results obtained were compatible with those stated in the literature. Furthermore, fabric type, sewing direction, sewing thread type, and needle size significantly affected the sewing damage. However, stitch density did not affect the sewing damage. When the effect of washing cycles was compared, it was seen that washing leads to an increase in sewing damage.

Originality/value

A review of the existing literature shows that no previous study has evaluated sewing damage using image analysis software. This study proposes a novel objective method to determine the sewing damage that occurs in knitted fabrics.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 1999

Eric Mallet and Ruxu Du

Sewing is one of the most commonly used manufacturing processes in the world. Millions of parts are sewn every day ranging from cloths, shoes, furniture, to automobile seat…

Abstract

Sewing is one of the most commonly used manufacturing processes in the world. Millions of parts are sewn every day ranging from cloths, shoes, furniture, to automobile seat covers. However, it is also one of the least understood processes. In fact, according to literature survey, few know how to calculate the sewing force or the fabric deformation during the sewing. This paper presents our research on using finite element model (FEM) to study the sewing process. The model is developed using ANSYS software system. In the model, the fabric is approximated by a number of perpendicular beam elements with elastic and plastic capabilities. On the other hand, the needle is modeled by a simple elastic beam. The contact between the two parts is modeled by contact elements. The variations of the needle geometry and the fabric material properties as well as the sewing conditions are also included in the model. The model can simulate the needle piercing through a material, and calculates the sewing forces as well as the fabric deformation forming a hole. It has been verified experimentally and can be used to study the effects of the key sewing parameters such as the fabric material properties and the needle geometry.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Content available
Article
Publication date: 1 August 2000

Jack Hollingum

80

Abstract

Details

Industrial Robot: An International Journal, vol. 27 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 July 2013

Xiaohui Xie, Cui Ma, Qiang Sun and Ruxu Du

Bar‐tacking is a specialized sewing stitch designed to provide immense tensile strength to the garment which requires a high‐speed precision bar‐tacking sewing machine. This paper…

Abstract

Purpose

Bar‐tacking is a specialized sewing stitch designed to provide immense tensile strength to the garment which requires a high‐speed precision bar‐tacking sewing machine. This paper aims to present an event‐driven multi‐axis cooperative control method for a bar‐tacking sewing machine.

Design/methodology/approach

The control method consists of two parts: the multi‐axis cooperative control and the needle stop positioning control. The challenges include the high speed and the precision. For example, the needle must stop at a set position in milliseconds.

Findings

The presented multi‐axis cooperative control can ensure the high speed response and the precision of the cooperative control. The needle stop positioning control is based on a combination of the velocity control and the position control with velocity feed‐forward and limitation.

Research limitations/implications

The bar‐tacking sewing machine requires high‐speed start and stop response and coordination of displacement and velocity only at some given points. Therefore, the conventional multi‐axis cooperative control methods are not suitable. In addition, it requires high‐speed precision control under varying loading conditions.

Practical implications

While there are a number of commercial textile machines available in the market, designing a smart bar‐tacking sewing machine with good speed and precision performance remains a challenge.

Originality/value

The bar‐tacking sewing machine requires highly accurate multi‐axes cooperative control. The presented event‐driven multi‐axis control method is effective. It has not only the required high accuracy but also the fast time response.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 March 2012

Giuseppe Dell'Anno, Ivana Partridge, Denis Cartié, Alexandre Hamlyn, Edmon Chehura, Stephen James and Ralph Tatam

The purpose of this paper is to focus on exploring an innovative combination of cutting‐edge technologies to be implemented within automated processes for composite parts…

1261

Abstract

Purpose

The purpose of this paper is to focus on exploring an innovative combination of cutting‐edge technologies to be implemented within automated processes for composite parts manufacturing. The objective is the design of a production route for components with tailored fibre orientation and ply lay‐up, with improved damage tolerance thanks to through‐the‐thickness reinforcement and integrated health monitoring systems based on optical fibres technology. This study is part of the FP7 project ADVITAC.

Design/methodology/approach

The proposed technologies are described in detail and their compatibility and potential for integration are discussed.A set up for on‐line monitoring of infusion and curing processes of carbon/epoxy laminates preformed by dry fibre placement technology is proposed, and a preliminary study of their mechanical performance is presented. The possibility of reinforcing through‐the‐thickness preforms manufactured with dry slit tapes automatically laid‐up and consolidated by laser heating is investigated.

Findings

Improved knowledge was obtained of interaction/compatibility between the discussed technologies and scope for application.

Research limitations/implications

The paper reports the technical potential and practical feasibility of the proposed integrated production process. Limited quantitative evaluations on the materials performance are provided. The analysis of the technologies involved represents the early outcome of the ongoing ADVITAC project.

Practical implications

This study contributes to the identification of a new generation of composite architecture which allows production cost and weight savings while retaining the level of quality suitable for demanding structural applications, with particular relevance to the aerospace field.

Originality/value

This paper investigates for the first time the practical possibility of designing a single automated process involving dry fibre placement, tufting and optical fibre sensor monitoring for the production of complex composite components.

Details

International Journal of Structural Integrity, vol. 3 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 4 December 2020

Yousef Ebraheem, Emilie Drean and Dominique Charles Adolphe

The paper aims to present the design, validation and integration of a universal fabric gripper. Flexible material handling is one of the most challenging problems occurring in the…

Abstract

Purpose

The paper aims to present the design, validation and integration of a universal fabric gripper. Flexible material handling is one of the most challenging problems occurring in the field of manipulator robots. Because textile products shape and properties can widely vary, each textile and each technological operation should have its own specialized gripper. The objective of the work described here is therefore to design a universal gripper able to grip and transfer every kind of textile.

Design/methodology/approach

The design objectives are the ability to handle panels of varying shapes and sizes without material deformation and/or folding, and the easy integration with commercially available manipulator robots. To answer initial requirements and increase the textile gripping reliability, we opted to combine three different gripping technologies: vacuum, intrusion and pinch.

Findings

Each system was first validated independently through static tests. The vacuum technology offers a high reliability to handle impermeable materials. The intrusion technology is reliable for the manipulation of high porosity materials, while the pinch technology shows good results for all soft fabrics when combined with the vacuum technology. Then, the limits of the new gripper in terms of gripping capacity, compressed air consumption and characteristics and limitations of the flexible material handled were put in evidence using a robot arm. An automated selection program of the gripper based on the material characteristics has also been developed and implemented.

Originality/value

This paper fulfills an identified need to design a universal gripper able to grip and transfer every different kind of cut textile.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2021

Esra Zeynep Yıldız and Oktay Pamuk

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric…

Abstract

Purpose

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric into the garment and actual performance of the sewn fabric during wear of the garment. The adjustment of all sewing parameters is necessary to ensure quality. The purpose of this paper is to define the parameters that affect seam quality comprehensively.

Design/methodology/approach

This study primarily focuses on the studies dealing with the effect of various parameters on-seam quality in detail. A systematic literature review was conducted.

Findings

The interactions between parameters may lead to different results than the effect of a single parameter. In addition, changing some parameters may have a positive effect on one element of seam quality while having a negative effect on another. For this reason, it is very important to properly select the parameters according to the specific end use of the garment products and also to consider the interactions.

Originality/value

The knowledge of various factors that affect seam quality will be helpful for manufacturers to improve production performance and to be able to produce high-quality seam.

Details

Research Journal of Textile and Apparel, vol. 25 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 511