Search results

1 – 10 of 40
Article
Publication date: 3 April 2024

Adhithya Sreeram and Jayaraman Kathirvelan

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type…

Abstract

Purpose

Artificial fruit ripening is hazardous to mankind. In the recent past, artificial fruit ripening is increasing gradually due to its commercial benefits. To discriminate the type of fruit ripening involved at the vendors’ side, there is a great demand for on-sight ethylene detection in a nondestructive manner. Therefore, this study aims to deal with a comparison of various laboratory and portable methods developed so far with high-performance metrics to identify the ethylene detection at fruit ripening site.

Design/methodology/approach

This paper focuses on various types of technologies proposed up to date in ethylene detection, fabrication methods and signal conditioning circuits for ethylene detection in parts per million and parts per billion levels. The authors have already developed an infrared (IR) sensor to detect ethylene and also developed a lab-based setup belonging to the electrochemical sensing methods to detect ethylene for the fruit ripening application.

Findings

The authors have developed an electrochemical sensor based on multi-walled carbon nanotubes whose performance is relatively higher than the sensors that were previously reported in terms of material, sensitivity and selectivity. For identifying the best sensing technology for optimization of ethylene detection for fruit ripening discrimination process, authors have developed an IR-based ethylene sensor and also semiconducting metal-oxide ethylene sensor which are all compared with literature-based comparable parameters. This review paper mainly focuses on the potential possibilities for developing portable ethylene sensing devices for investigation applications.

Originality/value

The authors have elaborately discussed the new chemical and physical methods of ethylene detection and quantification from their own developed methods and also the key findings of the methods proposed by fellow researchers working on this field. The authors would like to declare that the extensive analysis carried out in this technical survey could be used for developing a cost-effective and high-performance portable ethylene sensing device for fruit ripening and discrimination applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 October 2022

Sidney Newton

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Abstract

Purpose

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Design/methodology/approach

A range of perceptual and physiological measures are obtained across different time periods and during different activities in a fieldwork setting. Differences in the empirical results are analysed and implications for future studies of stress discussed.

Findings

The results of this study strongly support the use of multiple psychometrics and biosensors whenever biometrics are included in the study of stress. Perceptual, physiological and environmental factors are all shown to act in concert to impact stress. Strong conclusions on the potential drivers of stress should then only be considered when consistent results apply across multiple metrics, time periods and activities.

Research limitations/implications

Stress is an incredibly complex condition. This study demonstrates why many current applications of biosensors to study stress in construction are not up to the task and provides empirical evidence on how future studies can be significantly improved.

Originality/value

To the best of the author’s knowledge, this is the first study to focus explicitly on demonstrating the need for multiple research instruments and settings when studying stress or related conditions in construction.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 18 January 2024

Huazhou He, Pinghua Xu, Jing Jia, Xiaowan Sun and Jingwen Cao

Fashion merchandising hold a paramount position within the realm of retail marketing. Currently, the purpose of this article is that the assessment of display effectiveness…

47

Abstract

Purpose

Fashion merchandising hold a paramount position within the realm of retail marketing. Currently, the purpose of this article is that the assessment of display effectiveness predominantly relies on the subjective judgment of merchandisers due to the absence of an effective evaluation method. Although eye-tracking devices have found extensive used in tracking the gaze trajectory of subject, they exhibit limitations in terms of stability when applied to the evaluation of various scenes. This underscores the need for a dependable, user-friendly and objective assessment method.

Design/methodology/approach

To develop a cost-effective and convenient evaluation method, the authors introduced an image processing framework for the assessment of variations in the impact of store furnishings. An optimized visual saliency methodology that leverages a multiscale pyramid model, incorporating color, brightness and orientation features, to construct a visual saliency heatmap. Additionally, the authors have established two pivotal evaluation indices aimed at quantifying attention coverage and dispersion. Specifically, bottom features are extract from 9 distinct scale images which are down sampled from merchandising photographs. Subsequently, these extracted features are amalgamated to form a heatmap, serving as the focal point of the evaluation process. The authors have proposed evaluation indices dedicated to measuring visual focus and dispersion, facilitating a precise quantification of attention distribution within the observed scenes.

Findings

In comparison to conventional saliency algorithm, the optimization method yields more intuitive feedback regarding scene contrast. Moreover, the optimized approach results in a more concentrated focus within the central region of the visual field, a pattern in alignment with physiological research findings. The results affirm that the two defined indicators prove highly effective in discerning variations in visual attention across diverse brand store displays.

Originality/value

The study introduces an intelligent and cost-effective objective evaluate method founded upon visual saliency. This pioneering approach not only effectively discerns the efficacy of merchandising efforts but also holds the potential for extension to the assessment of fashion advertisements, home design and website aesthetics.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 August 2023

P.S. JosephNg

This study aims to highlight that security and flexibilities remain the main points of contention in the cordiality business. This research points to planning a framework that…

53

Abstract

Purpose

This study aims to highlight that security and flexibilities remain the main points of contention in the cordiality business. This research points to planning a framework that empowers hotel users to get to the room using a mobile access key. Advancing secured facilities, mobile phone “Near Field Communication” (NFC) innovation as the entrance device by carrying out an application containing an imitated mobile key for explicit verification access is used.

Design/methodology/approach

The proposed system is evaluated by triangulation of experimental, numerical and rational evaluation using partial least square structural equation modeling (PLS-SEM) with Malaysian hotel guests and employees.

Findings

The discoveries with the hypothesis supported validated that the suggested solution can eliminate physical cards, boost protection and encourage a contactless ecosystem. Theoretical, management and societal contributions are discussed here.

Research limitations/implications

This experiment comes with the constraints that it was conducted in only two hotels and does not fully reflect the choices of a wider range of travellers. Secondly, the cost of existing NFC smart locks is still relatively high, and along with the development of technology, the price will decrease when supply exceeds demand.

Practical implications

To promote high-security attributes, NFC technology as the access system by implementing an application containing an emulated smart key for specific authentication access is used. The host-card emulation enables cost-effectiveness profit and initiating a defence system in the pandemic era.

Social implications

To promote high-security attributes, NFC technology is used as the access system by implementing an application containing an emulated smart key for specific authentication access. The host-card emulation enables cost-effectiveness profit and initiating a defence system in the pandemic era.

Originality/value

The novelty of this study comes from the use of commonly available smartphone NFC features that are yet to be applied in the tourism ecosystem. The research provokes the applied concept of mobile smartkeys.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 3
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 25 January 2024

Manman Li, Qing Bao, Sumin Lei, Linlin Xing and Shu Gai

The service environment of urban polyethylene (PE) pipes has a crucial influence on their long-term safety and performance. Based on the application and structural performance…

Abstract

Purpose

The service environment of urban polyethylene (PE) pipes has a crucial influence on their long-term safety and performance. Based on the application and structural performance analysis of PE pipe failure cases, this study aims to investigate the impact of organic substances in the soil on the aging behavior of PE pipes by designing organic solutions with different concentrations, which are based on the composition of organic substances in the soil environment, and periodic immersion tests.

Design/methodology/approach

Soil samples in the vicinity of the failed pipes were analyzed by gas chromatography-mass spectrometry, sensitive organic substances were screened and soaking solutions of different concentrations were designed. After the soaking test, the PE pipe samples were analyzed using differential scanning calorimetry, Fourier-transform infrared spectroscopy and other testing methods.

Findings

The performance difference between the outer surface and the middle of the cross section of PE pipes highlights the influence of the soil service environment on their aging. Different organic solutions can have varying impacts on the aging behavior of PE pipes when immersed. For instance, when exposed to amine organic solutions, PE pipes may have an increased weight and decreased material yield strength, although there is no reduction in their thermal or oxygen stability. On the contrary, when subjected to ether organic solutions, the surface of PE pipe specimens may be affected, leading to a reduction in material fracture elongation and a decrease in their thermal and oxygen stability. Furthermore, immersion in either amine or ether organic solutions may result in the production of hydroxyl and other aging groups on the surface of the material.

Originality/value

Understanding the potential impact of organic substances in the soil environment on the aging of PE pipe ensures the long-term performance and safety of urban PE pipe. This research approach will provide valuable insights into improving the durability and reliability of urban PE pipes in soil environments.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 March 2023

Yuzhen Zhao, Mingxu Zhao, Huimin Zhang, Xiangrong Zhao, Yang Zhao, Zhun Guo, Jianjing Gao, Cheng Ma and Yongming Zhang

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Abstract

Purpose

This paper aims to prepare third-order nonlinear optical (NLO) organic materials with large nonlinear optimization value, high damage threshold and ultrafast response time.

Design/methodology/approach

A series of novel symmetric and asymmetric compounds possessing third-order NLO properties were synthesized using 1,3,5-tribromobenzene as the basis. The photophysical and electrochemical properties, as well as the click reactions, were characterized by means of UV–VIS–NIR absorption spectroscopy and cyclic voltammetry.

Findings

The donor–acceptor chromophores were inserted into compound, making the molecule to have a broader absorption in the near-infrared regions and a narrower optical and electrochemical band gap. It also formed an electron-delocalized organic system, which has larger effects on achieving a third-order NLO response. The third-order NLO phenomenon of benzene ring complexes was experimentally studied at 532 nm using Z-scan technology, and some compounds showed the expected NLO properties.

Originality/value

The click products exhibit more NLO phenomena by performing different click combinations to the side groups, opening new perspectives on using the system in a variety of photoelectric applications.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 March 2024

Ahmad Hadipour, Zahra Mahmoudi, Saeed Manoochehri, Heshmatollah Ebrahimi-Najafabadi and Zahra Hesari

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to…

Abstract

Purpose

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to oxidation, various studies have investigated the production of olive oil particles. The purpose of this study was to use chitosan and sodium alginate as the vehicle polymers for olive oil.

Design/methodology/approach

The gelation method used to prepare the sodium alginate miliparticles containing olive oil and particles were coated with chitosan. Morphology and size, zeta potential, infrared spectrum of olive oil miliparticles, encapsulation efficiency and oil release profile were investigated. Among 12 primary fabricated formulations, formulations F5 (olive oil loaded alginate miliparticles) and F11 (olive oil loaded alginate miliparticles + chitosan coat) were selected for further evaluations.

Findings

The size of the miliparticles was in the range of 1,100–1,600 µm. Particles had a spherical appearance, and chitosan coat made a smoother surface according to the scanning electron microscopy. The zeta potential of miliparticles were −30 mV for F5 and +2.7 mV for F11. Fourier transform infrared analysis showed that there was no interaction between olive oil and other excipients. Encapsulation efficiency showed the highest value of 85% in 1:4 (olive oil:alginate solution) miliparticles in F11. Release study indicated a maximum release of 68.22% for F5 and 60.68% for F11 in 24 h (p-value < 0.016). Therefore, coating with chitosan had a marked effect on slowing the release of olive oil. These results indicated that olive oil in various amounts can be successfully encapsulated into the sodium-alginate capsules cross-linked with glutaraldehyde.

Originality/value

To the best of the authors’ knowledge, no study has used chitosan and sodium alginate as the vehicle polymers for microencapsulation of olive oil.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 40