Search results

1 – 10 of over 13000
Article
Publication date: 7 August 2017

Wilson E. Sakpere, Nhlanhla Boyfriend Wilton Mlitwa and Michael Adeyeye Oshin

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and…

Abstract

Purpose

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and stringent environments through the experiential manipulation of technical attributes of the positioning and navigation system.

Design/methodology/approach

The study followed a quantitative and experimental method of empirical enquiry and software engineering and synthesis research methods. The study further entails three implementation processes, namely, map generation, positioning framework and navigation service using a prototype mobile navigation application that uses the near field communication (NFC) technology.

Findings

The approach and findings revealed that the capability of NFC in leveraging its low-cost infrastructure of passive tags, its availability in mobile devices and the ubiquity of the mobile device provided a cost-effective solution with impressive accuracy and usability. The positioning accuracy achieved was less than 9 cm. The usability improved from 44 to 96 per cent based on feedbacks given by respondents who tested the application in an indoor environment. These showed that NFC is a viable alternative to resolve the challenges identified in previous solutions and technologies.

Research limitations/implications

The major limitation of the navigation application was that there is no real-time update of user position. This can be investigated and extended further by using NFC in a hybrid make-up with WLAN, radio-frequency identification (RFID) or Bluetooth as a cost-effective solution for real-time indoor positioning because of their coverage and existing infrastructures. The hybrid positioning model, which merges two or more techniques or technologies, is becoming more popular and will improve its accuracy, robustness and usability. In addition, it will balance complexity, compensate for the limitations in the technologies and achieve real-time mobile indoor navigation. Although the presence of WLAN, RFID and Bluetooth technologies are likely to result in system complexity and high cost, NFC will reduce the system’s complexity and balance the trade-off.

Practical implications

Whilst limitations in existing indoor navigation technologies meant putting up with poor signal and poor communication capabilities, outcomes of the NFC framework will offer valuable insight. It presents new possibilities on how to overcome signal quality limitations at improved turn-around time in constrained indoor spaces.

Social implications

The innovations have a direct positive social impact in that it will offer new solutions to mobile communications in the previously impossible terrains such as underground platforms and densely covered spaces. With the ability to operate mobile applications without signal inhibitions, the quality of communication – and ultimately, life opportunities – are enhanced.

Originality/value

While navigating, users face several challenges, such as infrastructure complexity, high-cost solution, inaccuracy and usability. Hence, as a contribution, this paper presents a symbolic map and path architecture of a floor of the test-bed building that was uploaded to OpenStreetMap. Furthermore, the implementation of the RFID and the NFC architectures produced new insight on how to redress the limitations in challenged spaces. In addition, a prototype mobile indoor navigation application was developed and implemented, offering novel solution to the practical problems inhibiting navigation in indoor challenged spaces – a practical contribution to the community of practice.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 September 2018

James Francis Ohene-Djan and Sandra A. Fernando

The SETUP09 system consists of both navigation and a computer-aided drawing technique for people who are blind and visually impaired (BVI). The purpose of this paper is to address…

Abstract

Purpose

The SETUP09 system consists of both navigation and a computer-aided drawing technique for people who are blind and visually impaired (BVI). The purpose of this paper is to address the need for a screen navigation technique, which can facilitate a user’s ability to produce art, and scientific diagrams electronically, by introducing a compass-based screen navigation method.

Design/methodology/approach

BVI computer users were tested using different screen navigation tasks to assess the accuracy and efficiency of this compass-based navigation technique by using a prototype (SETUP09) and tactile paper grid maps.

Findings

The results confirmed that the compass-based navigation facilitates higher accuracy in screen-based moving and location recognition with a noticeable reduction in time and effort.

Research limitations/implications

Improvements such as the addition of a sound layer to the interface, use of hotkeys, braille and user speech inputs are yet to be tested.

Social implications

The current lack of suitable and efficient screen navigation technology is a limiting factor for BVI students and computer users in producing diagrams and drawings. This may place limitations on their career progression and life contentment. It is challenging for a BVI person to draw diagrams and art, which are commonly taught in education or used in industry. The compass-based screen navigation system was developed to address BVI users’ need to be able to create such content.

Originality/value

A compass-based navigation method enables screen navigation through a formal command language and enables intuitive movement to a screen location using matrix-style compass directions with zoom-in and zoom-out capabilities.

Details

Journal of Enabling Technologies, vol. 12 no. 3
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 29 August 2023

Krystian Borodacz and Cezary Szczepański

Before designing a navigation system, it is necessary to analyse possible approaches in terms of expected accuracy, existing limitations and economic justification to select the…

Abstract

Purpose

Before designing a navigation system, it is necessary to analyse possible approaches in terms of expected accuracy, existing limitations and economic justification to select the most advantageous solution. This paper aims to collect possible navigation methods that can provide correction for inertial navigation and to evaluate their suitability for use on a manoeuvring tactical missile.

Design/methodology/approach

The review of existing munitions was based on data collected from the literature and online databases. The data collected included dimensions, performance, applied navigation and guidance methods and their achievable accuracy. The requirements and limitations identified were confronted with the range of sensor parameters available on the market. Based on recent literature, navigation methods were reviewed and evaluated for applicability to inertial navigation system (INS) correction in global navigation satellite system-denied space.

Findings

The performance analysis of existing munition shows that small and relatively inexpensive micro-electro-mechanical system-type inertial sensors are required. A review of the parameters of existing devices of this type has shown that they are subject to measurement errors that do not allow them to achieve the delivery accuracy expected of precision missiles. The most promising navigation correction methods for manoeuvring flying objects have been identified.

Originality/value

The information presented in this paper is the result of the first phase of a project and presents the results of the requirements selection, initial sizing and preliminary design of the navigation system. This paper combines a review of the current state of the art in missile systems and an analysis of INS accuracy including the selection of sensor parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 March 2017

Weina Chen, Qinghua Zeng, Jianye Liu and Huizhe Wang

The purpose of this paper is to propose a seamless autonomous navigation method based on the motion constraint of the mobile robot, which is able to meet the practical need of…

Abstract

Purpose

The purpose of this paper is to propose a seamless autonomous navigation method based on the motion constraint of the mobile robot, which is able to meet the practical need of maintaining the navigation accuracy during global positioning system (GPS) outages.

Design/methodology/approach

The seamless method uses the motion constraint of the mobile robot to establish the filter model of the system, in which the virtual observation about the speed is used to overcome the shortage of the navigation accuracy during GPS outages. The corresponding motion constraint model of the mobile robot is established. The proposed seamless navigation scheme includes two parts: the micro inertial navigation system (MINS)/GPS-integrated filter model and the motion constraint filter model. When the satellite signals are good, the system works on the MINS/GPS-integrated mode. If some obstacles block the GPS signals, the motion constraint measurement equation will be effective so as to improve the navigation accuracy of the mobile robot.

Findings

Three different vehicle tests of the mobile robot show that the seamless navigation method can overcome the shortage of the navigation accuracy during GPS outages, so as to improve the navigation performance in practical applications.

Originality/value

A seamless navigation system based on the motion constraint of the mobile robot is proposed to overcome the shortage of the navigation accuracy during GPS outages, thus improving the adaptability of the robot navigation.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 August 2013

Jia LIU, Yumin Zhang, Lei Guo and Xiaoying Gao

A full-order multi-objective anti-disturbance robust filter for SINS/GPS navigation systems with multiple disturbances is designed. Generally, the unmodeled dynamics, the external…

Abstract

Purpose

A full-order multi-objective anti-disturbance robust filter for SINS/GPS navigation systems with multiple disturbances is designed. Generally, the unmodeled dynamics, the external environmental disturbance and the inertial apparatus random drift may exist simultaneously in an integrated navigation system, which can be classified into three type of disturbances, that is, the Gaussian noise, the norm bounded noise and the time correlated noise. In most classical studies, the disturbances in integrated navigation systems are classified as Gaussian noises or norm bounded noises, where the Kalman filtering or robust filtering can be employed, respectively. While it is not true actually, such assumptions may lead to conservative results. The paper aims to discuss these issues.

Design/methodology/approach

The Gaussian noises, the norm bounded noises and the time correlated noises in the integrated navigation system are considered simultaneously in this contribution. As a result, the time correlated noises are augmented as a part of system state of the integrated navigation system error model, the relative integrated navigation problem can be transformed into a full-order multi-objective robust filter design problem for systems with Gaussian noises and norm bounded disturbances. Certainly, the errors of the time correlated noises are estimated and compensated for high precision navigation purpose. Sufficient conditions for the existence of the proposed filter are presented in terms of linear matrix inequalities (LMIs) such that the system stability is guaranteed and the disturbance attenuation performance is achieved.

Findings

Simulations for SINS/GPS integrated navigation system given show that the proposed full-order multi-objective anti-disturbance filter, has stronger robustness and better precision when multiple disturbances exist, that is, the present algorithm not only can suppression the effect of white noises and norm bounded disturbance but also can estimate and compensate the modeled disturbance.

Originality/value

The proposed algorithm has stronger anti-disturbance ability for integrated navigation with multiple disturbances. In fact, there exist multiple disturbances in integrated navigation system, so the proposed scheme has important significance in applications.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 28 June 2013

Rong Wang, Jianye Liu, Zhi Xiong and Qinghua Zeng

The Embedded GPS/INS System (EGI) has been used more widely as central navigation equipment of aircraft. For certain cases needing high attitude accuracy, star sensor can be…

Abstract

Purpose

The Embedded GPS/INS System (EGI) has been used more widely as central navigation equipment of aircraft. For certain cases needing high attitude accuracy, star sensor can be integrated with EGI to improve attitude performance. Since the filtering‐correction loop has already built in finished EGI product, centralized or federated Kalman filter is not applicable for integrating EGI with star sensor; it is a challenge to design multi‐sensor information fusion algorithm suitable for this situation. The purpose of this paper is to present a double‐layer fusion scheme and algorithms to meet the practical need of constructing integrated multi‐sensor navigation system by star sensor assisting finished EGI unit.

Design/methodology/approach

The alternate fusion algorithms for asynchronous measurements and the sequential fusion algorithms for synchronous measurements are presented. By combining alternate filtering and sequential filtering algorithms, a kind of double‐layer fusion algorithms for multi‐sensors is proposed and validated by semi‐physical test in this paper.

Findings

The double‐layer fusion algorithms represent a filtering strategy for multiple non‐identical parallel sensors to assist INS, while the independent estimation‐correction loop in EGI is still maintained. It has significant benefits in updating original navigation system by integrating new sensors.

Practical implications

The approach described in this paper can be used in designing similar multi‐sensor information fusion navigation system composed by EGI and various kinds of sensors, so as to improve the navigation performance.

Originality/value

Compared with conventional approach, in the situation that centralized and federated Kalman filter are not applicable, the double‐layer fusion scheme and algorithms give an external filtering strategy for measurements of finished EGI unit and star sensors.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 25 September 2023

Ang Yang, Yu Cao, Yang Liu, Qingcheng Zeng and Fangqiang Xiu

Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high…

Abstract

Purpose

Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high flexibility of AGV operation in ACT, this paper aims to address the problem of technical stability leading to ACT production paralysis and propose a mini-terminal AGV robot for testing laser simultaneous location and mapping (SLAM)-based methods in ACT operation scenarios.

Design/methodology/approach

This study developed a physical simulation robot for terminal AGV operations, providing a platform to test technical solutions for applying laser navigation-related technologies in ACTs. Then, the terminal-AGV navigation system framework is designed to apply the laser-SLAM-based method in the physical simulation robot. Finally, the experiment is conducted in the terminal operation scenario to verify the feasibility of the proposed framework for lased-SLAM-based method testing and analyze the performance of the different mini-terminal AGV robots.

Findings

A series of experiments are conducted to analyze the performance of the proposed mini-terminal AGV robot for laser-SLAM-based method testing. The experimental results show the validity and effectiveness of the AGV robot and AGV navigation system framework with better local map matching, loopback and absolute positional error.

Originality/value

The proposed mini-terminal AGV robot and AGV navigation system framework can provide a platform for innovative laser-SLAM-based method testing in ACTs applications. Therefore, this study can effectively meet the high requirements of ACT for maturity and stability of the laser navigation technical.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 January 2011

Wu Xiaojuan and Wang Xinlong

The purpose of this paper is to overcome the limitations of existing celestial horizon references, and improve the navigation accuracy of the strap‐down inertial navigation system

1039

Abstract

Purpose

The purpose of this paper is to overcome the limitations of existing celestial horizon references, and improve the navigation accuracy of the strap‐down inertial navigation system/celestial navigation system (SINS/CNS) integrated system with an innovative scheme of deep integration.

Design/methodology/approach

First, a novel conception of mathematical horizon reference (MHR) provided by the strap‐down matrix of SINS is proposed. Then, the realization mechanism of the MHR‐based vertical vector is introduced from the viewpoint of vector rotation. Moreover, the MHR implementation scheme of high precision and reliability is presented, and on this basis, the method which utilizes vertical vector to achieve celestial navigation is introduced. In addition, with considering the characteristics of SINS and the MHR‐based CNS, the SINS/CNS deep integrated navigation system and its specific realization are proposed. Finally, simulation tests are implemented to validate this SINS/CNS deep integrated navigation method.

Findings

The innovative SINS/CNS deep integrated system could make full use of SINS and CNS navigation information to achieve higher navigation accuracy for the long‐duration and high‐altitude vehicles.

Originality/value

This paper provides a novel realization method of high precision MHR and the MHR‐based SINS/CNS deep integration.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 March 2018

Haiying Liu, Xin Jiang, Yazhou Yue and Guangen Gao

The study aims to propose reverse processing solution to improve the performance of strapdown inertial navigation system (SINS) initial alignment and SINS-/global positioning…

263

Abstract

Purpose

The study aims to propose reverse processing solution to improve the performance of strapdown inertial navigation system (SINS) initial alignment and SINS-/global positioning system- (GPS) integrated navigation. The proposed scheme can be well applied in the fields of aircraft and aerospace navigation.

Design/methodology/approach

For the SINS alignment phase, a fast initial alignment scheme is proposed: the initial value of reverse filter is determined by the final result of forward filter, and then, the reverse filter is carried out using the stored data. Multiple iterations are performed until the accuracy is satisfied. For the SINS-/GPS-integrated phase, a forward–reverse navigation algorithm is proposed: first, the standard forward filter is used, and then, the reverse filter is carried out using the initial value determined by the forward filter, and the final fusion results are achieved by the weighted smoothing of the forward and reverse filtering results.

Findings

The simulation and the actual test results show that in the initial alignment stage, the proposed reverse processing method can obviously shorten the SINS alignment time and improve the alignment accuracy. In the SINS-/GPS-integrated navigation data fusion stage, the proposed forward–reverse data fusion processing can, obviously, improve the performance of the navigation solution.

Practical implications

The proposed reverse processing technology has an important application in improving the accuracy of navigation and evaluating the performance of real-time navigation. The proposed scheme can be not only used for SINS-/GPS-integrated system but also applied to other integrated systems for general aviation aircraft.

Originality/value

Compared with the common forward filtering algorithm, the proposed reverse scheme can not only shorten alignment time and improve alignment accuracy but also improve the performance of the integrated navigation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 July 2022

Jintian Hu, Jin Liu, Yidi Wang and Xiaolin Ning

This study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic…

Abstract

Purpose

This study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic missiles. The authors introduce Doppler navigation system (DNS) and X-ray pulsar navigation (XNAV) to the traditional INS/CNS-integrated navigation system and then propose an INS/CNS/DNS/XNAV deep integrated navigation system.

Design/methodology/approach

DNS and XNAV can provide velocity and position information, respectively. In addition to providing velocity information directly, DNS suppresses the impact of the Doppler effect on pulsar time of arrival (TOA). A pulsar TOA with drift bias is observed during the short navigation process. To solve this problem, the pulsar TOA drift bias model is established. And the parameters of the navigation filter are optimised based on this model.

Findings

The experimental results show that the INS/CNS/DNS/XNAV deep integrated navigation can suppress the drift of the accelerometer to a certain extent to improve the precision of position and velocity determination. In addition, this integrated navigation method can reduce the required accuracy of inertial navigation, thereby reducing the cost of missile manufacturing and realising low-cost and high-precision navigation.

Originality/value

The velocity information provided by the DNS can suppress the pulsar TOA drift, thereby improving the positioning accuracy of the XNAV. This reflects the “deep” integration of these two navigation methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 13000