Search results

1 – 10 of 34
Open Access
Article
Publication date: 1 June 2021

Ondřej Bublík, Libor Lobovský, Václav Heidler, Tomáš Mandys and Jan Vimmr

The paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which…

Abstract

Purpose

The paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which are applied to problems of casting processes in complex mould cavities.

Design/methodology/approach

An experimental campaign aiming at the free-surface flow within a system of narrow channels is designed and executed under well-controlled laboratory conditions. An in-house lattice Boltzmann solver is implemented. Its algorithm is described in detail and its performance is tested thoroughly using both the newly recorded experimental data and well-known analytical benchmark tests.

Findings

The benchmark tests prove the ability of the implemented algorithm to provide a reliable solution when the surface tension effects become dominant. The convergence of the implemented method is assessed. The two new experimentally studied problems are resolved well by simulations using a coarse computational grid.

Originality/value

A detailed set of original experimental data for validation of computational schemes for simulations of free-surface gravity-driven flow within a system of narrow channels is presented.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 20 April 2019

Dongming Wei and Samer Al-Ashhab

The reduced problem of the Navier–Stokes and the continuity equations, in two-dimensional Cartesian coordinates with Eulerian description, for incompressible non-Newtonian fluids…

Abstract

The reduced problem of the Navier–Stokes and the continuity equations, in two-dimensional Cartesian coordinates with Eulerian description, for incompressible non-Newtonian fluids, is considered. The Ladyzhenskaya model, with a non-linear velocity dependent stress tensor is adopted, and leads to the governing equation of interest. The reduction is based on a self-similar transformation as demonstrated in existing literature, for two spatial variables and one time variable, resulting in an ODE defined on a semi-infinite domain. In our search for classical solutions, existence and uniqueness will be determined depending on the signs of two parameters with physical interpretation in the equation. Illustrations are included to highlight some of the main results.

Details

Arab Journal of Mathematical Sciences, vol. 26 no. 1/2
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 22 November 2023

En-Ze Rui, Guang-Zhi Zeng, Yi-Qing Ni, Zheng-Wei Chen and Shuo Hao

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural…

Abstract

Purpose

Current methods for flow field reconstruction mainly rely on data-driven algorithms which require an immense amount of experimental or field-measured data. Physics-informed neural network (PINN), which was proposed to encode physical laws into neural networks, is a less data-demanding approach for flow field reconstruction. However, when the fluid physics is complex, it is tricky to obtain accurate solutions under the PINN framework. This study aims to propose a physics-based data-driven approach for time-averaged flow field reconstruction which can overcome the hurdles of the above methods.

Design/methodology/approach

A multifidelity strategy leveraging PINN and a nonlinear information fusion (NIF) algorithm is proposed. Plentiful low-fidelity data are generated from the predictions of a PINN which is constructed purely using Reynold-averaged Navier–Stokes equations, while sparse high-fidelity data are obtained by field or experimental measurements. The NIF algorithm is performed to elicit a multifidelity model, which blends the nonlinear cross-correlation information between low- and high-fidelity data.

Findings

Two experimental cases are used to verify the capability and efficacy of the proposed strategy through comparison with other widely used strategies. It is revealed that the missing flow information within the whole computational domain can be favorably recovered by the proposed multifidelity strategy with use of sparse measurement/experimental data. The elicited multifidelity model inherits the underlying physics inherent in low-fidelity PINN predictions and rectifies the low-fidelity predictions over the whole computational domain. The proposed strategy is much superior to other contrastive strategies in terms of the accuracy of reconstruction.

Originality/value

In this study, a physics-informed data-driven strategy for time-averaged flow field reconstruction is proposed which extends the applicability of the PINN framework. In addition, embedding physical laws when training the multifidelity model leads to less data demand for model development compared to purely data-driven methods for flow field reconstruction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 September 2018

Shang-Han Gao and Sheng-Long Nong

This paper aims to analyze the pressure distribution of rectangular aerostatic thrust bearing with a single air supply inlet using the complex potential theory and conformal…

Abstract

Purpose

This paper aims to analyze the pressure distribution of rectangular aerostatic thrust bearing with a single air supply inlet using the complex potential theory and conformal mapping.

Design/methodology/approach

The Möbius transform is used to map the interior of a rectangle onto the interior of a unit circle, from which the pressure distribution and load carrying capacity are obtained. The calculation results are verified by finite difference method.

Findings

The constructed Möbius formula is very effective for the performance characteristics researches for the rectangular thrust bearing with a single air supply inlet. In addition, it is also noted that to obtain the optimized load carrying capacity, the square thrust bearing can be adopted.

Originality/value

The Möbius transform is found suitable to describe the pressure distribution of the rectangular thrust bearing with a single air supply inlet.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 7 December 2022

T.O.M. Forslund, I.A.S. Larsson, J.G.I. Hellström and T.S. Lundström

The purpose of this paper is to present a fast and bare bones implementation of a numerical method for quickly simulating turbulent thermal flows on GPUs. The work also validates…

Abstract

Purpose

The purpose of this paper is to present a fast and bare bones implementation of a numerical method for quickly simulating turbulent thermal flows on GPUs. The work also validates earlier research showing that the lattice Boltzmann method (LBM) method is suitable for complex thermal flows.

Design/methodology/approach

A dual lattice hydrodynamic (D3Q27) thermal (D3Q7) multiple-relaxation time LBM model capable of thermal DNS calculations is implemented in CUDA.

Findings

The model has the same computational performance compared to earlier publications of similar LBM solvers. The solver is validated against three benchmark cases for turbulent thermal flow with available data and is shown to be in excellent agreement.

Originality/value

The combination of a D3Q27 and D3Q7 stencil for a multiple relaxation time -LBM has, to the authors’ knowledge, not been used for simulations of thermal flows. The code is made available in a public repository under a free license.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 27 November 2023

J.I. Ramos and Carmen María García López

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the…

215

Abstract

Purpose

The purpose of this paper is to analyze numerically the blowup in finite time of the solutions to a one-dimensional, bidirectional, nonlinear wave model equation for the propagation of small-amplitude waves in shallow water, as a function of the relaxation time, linear and nonlinear drift, power of the nonlinear advection flux, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of three types of initial conditions.

Design/methodology/approach

An implicit, first-order accurate in time, finite difference method valid for semipositive relaxation times has been used to solve the equation in a truncated domain for three different initial conditions, a first-order time derivative initially equal to zero and several constant wave speeds.

Findings

The numerical experiments show a very rapid transient from the initial conditions to the formation of a leading propagating wave, whose duration depends strongly on the shape, amplitude and width of the initial data as well as on the coefficients of the bidirectional equation. The blowup times for the triangular conditions have been found to be larger than those for the Gaussian ones, and the latter are larger than those for rectangular conditions, thus indicating that the blowup time decreases as the smoothness of the initial conditions decreases. The blowup time has also been found to decrease as the relaxation time, degree of nonlinearity, linear drift coefficient and amplitude of the initial conditions are increased, and as the width of the initial condition is decreased, but it increases as the viscosity coefficient is increased. No blowup has been observed for relaxation times smaller than one-hundredth, viscosity coefficients larger than ten-thousandths, quadratic and cubic nonlinearities, and initial Gaussian, triangular and rectangular conditions of unity amplitude.

Originality/value

The blowup of a one-dimensional, bidirectional equation that is a model for the propagation of waves in shallow water, longitudinal displacement in homogeneous viscoelastic bars, nerve conduction, nonlinear acoustics and heat transfer in very small devices and/or at very high transfer rates has been determined numerically as a function of the linear and nonlinear drift coefficients, power of the nonlinear drift, viscosity coefficient, viscous attenuation, and amplitude, smoothness and width of the initial conditions for nonzero relaxation times.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 8 May 2018

Aidan Jungo, Mengmeng Zhang, Jan B. Vos and Arthur Rizzi

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods…

2196

Abstract

Purpose

The purpose of this paper is to present the status of the on-going development of the new computerized environment for aircraft synthesis and integrated optimization methods (CEASIOM) and to compare results of different aerodynamic tools. The concurrent design of aircraft is an extremely interdisciplinary activity incorporating simultaneous consideration of complex, tightly coupled systems, functions and requirements. The design task is to achieve an optimal integration of all components into an efficient, robust and reliable aircraft with high performance that can be manufactured with low technical and financial risks, and has an affordable life-cycle cost.

Design/methodology/approach

CEASIOM (www.ceasiom.com) is a framework that integrates discipline-specific tools like computer-aided design, mesh generation, computational fluid dynamics (CFD), stability and control analysis and structural analysis, all for the purpose of aircraft conceptual design.

Findings

A new CEASIOM version is under development within EU Project AGILE (www.agile-project.eu), by adopting the CPACS XML data-format for representation of all design data pertaining to the aircraft under development.

Research limitations/implications

Results obtained from different methods have been compared and analyzed. Some differences have been observed; however, they are mainly due to the different physical modelizations that are used by each of these methods.

Originality/value

This paper summarizes the current status of the development of the new CEASIOM software, in particular for the following modules: CPACS file visualizer and editor CPACSupdater (Matlab) Automatic unstructured (Euler) & hybrid (RANS) mesh generation by sumo Multi-fidelity CFD solvers: Digital Datcom (Empirical), Tornado (VLM), Edge-Euler & SU2-Euler, Edge-RANS & SU2-RANS Data fusion tool: aerodynamic coefficients fusion from variable fidelity CFD tools above to compile complete aero-table for flight analysis and simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Only content I have access to

Year

Content type

1 – 10 of 34