Search results

1 – 10 of over 8000
Article
Publication date: 10 August 2022

Weichao Yang, Yikang Liu, E. Deng, Youwu Wang, Xuhui He, Mingfeng Lei and Yunfeng Zou

The purpose of this paper is to understand the natural wind field characteristics of the tunnel entrance section and analyzing the aerodynamic performance of high-speed railway…

Abstract

Purpose

The purpose of this paper is to understand the natural wind field characteristics of the tunnel entrance section and analyzing the aerodynamic performance of high-speed railway trains (HSRTs) under natural winds.

Design/methodology/approach

Three typical tunnel entrance section sites, namely, tunnel–bridge in a dry canyon (TBDC), tunnel–bridge in a river canyon (TBRC) and tunnel–flat ground (TF), are selected to conduct a continuous wind field measurement. Based on the measured wind characteristics, the natural winds of the TBDC and TF sites are reconstituted and imported into the two corresponding full-scale computational fluid dynamics models. The aerodynamic loads of the HSRT running on TBDC and TF with reconstituted winds are simply analyzed.

Findings

The von Kármán spectrum can be used to describe the wind field at the tunnel entrance section. In the reconstituted natural wind condition, a time-varying feature of wind speed distribution and leeward side vortex around the HSRT caused by the wind speed fluctuation is found. The fluctuating amplitude of aerodynamic loads at the TBDC infrastructure is up to 97.9% larger than that at the TF infrastructure.

Originality/value

The natural wind characteristics at tunnel entrance sections on the high-speed railway are first measured and analyzed. A numerical reconstitution scheme considering the temporal and spatial variation of natural wind speed is proposed and verified based on field measurement results. The aerodynamic performance of an HSRT under reconstituted natural winds is first investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2018

Kannan Murugesan, Kalaichelvan K., M.P. Jenarthanan and Sornakumar T.

The purpose of this paper is to investigate the use of embedded Shape Memory Alloy (SMA) nitinol wire for the enhancement of vibration and damping characteristics of filament-wound

Abstract

Purpose

The purpose of this paper is to investigate the use of embedded Shape Memory Alloy (SMA) nitinol wire for the enhancement of vibration and damping characteristics of filament-wound fiber-reinforced plastic composite hollow shafts.

Design/methodology/approach

The plain Glass Fiber-Reinforced Plastic (GFRP) and plain Carbon Fiber-Reinforced Plastic (CFRP) hollow shafts were manufactured by filament winding technique. Experimental modal analysis was conducted for plain hollow shafts of C1045 steel, GFRP and CFRP by subjecting them to flexural vibrations as per ASTM standard C747, with both ends clamped (C-C) end condition to investigate their vibration and damping behavior in terms of first natural frequency, damping time and damping ratio. Nitinol wires pre-stressed at various pre-strains (2, 4 and 6 per cent) were embedded with CFRP hollow shafts following same manufacturing technique, and similar experimental modal analysis was carried out by activating nitinol wires. The first natural frequencies of all the shaft materials were also predicted theoretically and compared with experimental measurements.

Findings

Among the three materials C1045 steel, plain GFRP and plain CFRP, the vibration and damping behavior were found to be the best for plain CFRP. Hence, CFRP shafts were considered for further improvement by embedding nitinol wires at pre-stressed condition. For CFRP shafts embedded with nitinol wires, the damping time decreased; and damping ratio and first natural frequency increased with increase in percentage of pre-strain. In comparison with plain CFRP, 7 per cent increase in first natural frequency and 100 per cent increase in damping ratio were observed for nitinol embedded CFRP shafts with 6 per cent pre-strain. Theoretical predictions of the first natural frequencies agree well with the experimental results for all the shaft materials.

Originality/value

The effect of nitinol on vibration and damping characteristics of filament wound hollow CFRP composite shafts with different pre-strains has not been studied extensively by the previous researchers. This paper addresses the effect of embedded nitinol wires pre-stressed at three varied pre-strains, that is, 2, 4 and 6 per cent on the vibration and damping characteristics of composite hollow CFRP shafts manufactured by filament winding technique.

Details

Pigment & Resin Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 March 2021

Reza Fallahtafti and Mohammadjavad Mahdavinejad

Natural ventilation is an environmentally friendly effective way of improving thermal comfort and the quality of indoor conditions if applied properly. This study aims to…

394

Abstract

Purpose

Natural ventilation is an environmentally friendly effective way of improving thermal comfort and the quality of indoor conditions if applied properly. This study aims to investigate the physical mechanism of the air movement and also the influence of building geometry in a cross-ventilated room through a parametric study of window geometrical characteristics using computational fluid dynamics.

Design/methodology/approach

Momentum and continuity equations are solved by the control volume method using a commercially available software. Standard kɛ turbulence model is employed to simulate the incompressible airflow and SIMPLE algorithm to solve the conservation equations. Mean air velocity magnitude is measured at three different surfaces of different heights, and the effect of incoming wind velocity inside the building is studied.

Findings

The research concluded that window hood and sill projections reduce indoor wind velocity magnitude, play a major role in incoming wind direction and thus have a crucial impact on wind circulation and indoor air quality.

Social implications

The paper has evaluated redesigning of a both practical and ornamental architectural element named Palekaneh, which is found in many historical buildings in several hot places in the world. Its optimal design could increase indoor natural ventilation quality and decrease a space's cooling load. Therefore, a new passive cooling architectural element could be re-introduced to the regions previously enjoying such ornaments. This is economically efficient because it eventually saves a considerable amount of energy in the long run and is socially important because of the revitalization of architectural identity.

Originality/value

The role of a building envelope's physical features, although being studied for solar absorption and daylight availability, has rarely been investigated for natural ventilation, especially in a small scale, thus making the paper novel in this regard. This provides a guideline for designers to assess the impact of their design on redirecting wind-induced natural ventilation the very early stages of design.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3540

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 19 April 2022

Liwei Ju, Zhe Yin, Qingqing Zhou, Li Liu, Yushu Pan and Zhongfu Tan

This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and propose a low-carbon economic scheduling optimization model for GVPP considering carbon…

Abstract

Purpose

This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and propose a low-carbon economic scheduling optimization model for GVPP considering carbon emission trading.

Design/methodology/approach

In view of the strong uncertainty of wind power and photovoltaic power generation in GVPP, the information gap decision theory (IGDT) is used to measure the uncertainty tolerance threshold under different expected target deviations of the decision-makers. To verify the feasibility and effectiveness of the proposed model, nine-node energy hub was selected as the simulation system.

Findings

GVPP can coordinate and optimize the output of electricity-to-gas and gas turbines according to the difference in gas and electricity prices in the electricity market and the natural gas market at different times. The IGDT method can be used to describe the impact of wind and solar uncertainty in GVPP. Carbon emission rights trading can increase the operating space of power to gas (P2G) and reduce the operating cost of GVPP.

Research limitations/implications

This study considers the electrical conversion and spatio-temporal calming characteristics of P2G, integrates it with VPP into GVPP and uses the IGDT method to describe the impact of wind and solar uncertainty and then proposes a GVPP near-zero carbon random scheduling optimization model based on IGDT.

Originality/value

This study designed a novel structure of the GVPP integrating P2G, gas storage device into the VPP and proposed a basic near-zero carbon scheduling optimization model for GVPP under the optimization goal of minimizing operating costs. At last, this study constructed a stochastic scheduling optimization model for GVPP.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 6 February 2020

Ramakrishna Shinagam, Guntaka Ajay, Lokanadham Patta and Anand Siva Gandam

Wind power is the one of best natural resources to meet the demands of electricity in India. In this regard, one of engineering college in Visakhapatnam has procured wind turbine…

Abstract

Purpose

Wind power is the one of best natural resources to meet the demands of electricity in India. In this regard, one of engineering college in Visakhapatnam has procured wind turbine generators of 200 kWp and got these installed on the rooftop of the college buildings for research and power generation. After starting the mills, huge vibrations were experienced by the staff and students in the laboratories and classrooms. So, the purpose of this paper is to carry out vibration and noise studies on wind turbine generator to identify the problem for high vibrations and suggest a novel method for vibration reduction.

Design/methodology/approach

Experimental vibration and natural frequency investigations are carried when wind velocity around 6.0 m/s using frequency analyzer, impact hammer, condenser microphone and accelerometer. An attempt is made to reduce the vibration and noise level of wind turbine generator by inserting a steel coil spring of 300 mm length having 20 turns in series with turnbuckle D shackle assembly, which is used to connect the wind turbine generator to the hook mounted on slab.

Findings

A high vibration velocity of 9.9 mm/s was observed on at base frame of wind turbine generator. The natural frequencies of hook and slab are observed in between 15 to 20 Hz from the natural frequency test. A high noise of 94.67 dBA is observed at a distance of 1 m from the base of wind turbine generator along the rotational axis of rotor. After modification to the baseline, WTG the vibration and noise levels are reduced to 4.8 mm/sec and 77.76 dBA, respectively.

Originality/value

This is the first time to study the huge vibrations generated in wind turbine generators installed on the rooftop of the college. Developed a novel methodology to reduce the vibrations by inserting a steel coil springs in turnbuckle D shackle assembly of wind turbine generators. After modification, wind turbine generator are running successfully without any high vibrations.

Article
Publication date: 23 November 2023

Ruizhen Song, Xin Gao, Haonan Nan, Saixing Zeng and Vivian W.Y. Tam

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based…

Abstract

Purpose

This research aims to propose a model for the complex decision-making involved in the ecological restoration of mega-infrastructure (e.g. railway engineering). This model is based on multi-source heterogeneous data and will enable stakeholders to solve practical problems in decision-making processes and prevent delayed responses to the demand for ecological restoration.

Design/methodology/approach

Based on the principle of complexity degradation, this research collects and brings together multi-source heterogeneous data, including meteorological station data, remote sensing image data, railway engineering ecological risk text data and ecological restoration text data. Further, this research establishes an ecological restoration plan library to form input feature vectors. Random forest is used for classification decisions. The ecological restoration technologies and restoration plant species suitable for different regions are generated.

Findings

This research can effectively assist managers of mega-infrastructure projects in making ecological restoration decisions. The accuracy of the model reaches 0.83. Based on the natural environment and construction disturbances in different regions, this model can determine suitable types of trees, shrubs and herbs for planting, as well as the corresponding ecological restoration technologies needed.

Practical implications

Managers should pay attention to the multiple types of data generated in different stages of megaproject and identify the internal relationships between these multi-source heterogeneous data, which provides a decision-making basis for complex management decisions. The coupling between ecological restoration technologies and restoration plant species is also an important factor in improving the efficiency of ecological compensation.

Originality/value

Unlike previous studies, which have selected a typical section of a railway for specialized analysis, the complex decision-making model for ecological restoration proposed in this research has wider geographical applicability and can better meet the diverse ecological restoration needs of railway projects that span large regions.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 April 2021

Günsu Merin Abbas and Ipek Gursel Dino

Biocontaminants represent higher risks to occupants' health in shared spaces. Natural ventilation is an effective strategy against indoor air biocontamination. However, the…

Abstract

Purpose

Biocontaminants represent higher risks to occupants' health in shared spaces. Natural ventilation is an effective strategy against indoor air biocontamination. However, the relationship between natural ventilation and indoor air contamination requires an in-depth investigation of the behavior of airborne infectious diseases, particularly concerning the contaminant's viral and aerodynamic characteristics. This research investigates the effectiveness of natural ventilation in preventing infection risks for coronavirus disease (COVID-19) through indoor air contamination of a free-running, naturally-ventilated room (where no space conditioning is used) that contains a person having COVID-19 through building-related parameters.

Design/methodology/approach

This research adopts a case study strategy involving a simulation-based approach. A simulation pipeline is implemented through a number of design scenarios for an open office. The simulation pipeline performs integrated contamination analysis, coupling a parametric 3D design environment, computational fluid dynamics (CFD) and energy simulations. The results of the implemented pipeline for COVID-19 are evaluated for building and environment-related parameters. Study metrics are identified as indoor air contamination levels, discharge period and the time of infection.

Findings

According to the simulation results, higher indoor air temperatures help to reduce the infection risk. Free-running spring and fall seasons can pose higher infection risk as compared to summer. Higher opening-to-wall ratios have higher potential to reduce infection risk. Adjacent window configuration has an advantage over opposite window configuration. As a design strategy, increasing opening-to-wall ratio has a higher impact on reducing the infection risk as compared to changing the opening configuration from opposite to adjacent. However, each building setup is a unique case that requires a systematic investigation to reliably understand the complex airflow and contaminant dispersion behavior. Metrics, strategies and actions to minimize indoor contamination risks should be addressed in future building standards. The simulation pipeline developed in this study has the potential to support decision-making during the adaptation of existing buildings to pandemic conditions and the design of new buildings.

Originality/value

The addressed need of investigation is especially crucial for the COVID-19 that is contagious and hazardous in shared indoors due to its aerodynamic behavior, faster transmission rates and high viral replicability. This research contributes to the current literature by presenting the simulation-based results for COVID-19 as investigated through building-related and environment-related parameters against contaminant concentration levels, the discharge period and the time of infection. Accordingly, this research presents results to provide a basis for a broader understanding of the correlation between the built environment and the aerodynamic behavior of COVID-19.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 December 2019

Ali Mostafaeipour, Sajjad Sadeghi, Mehdi Jahangiri, Omid Nematollahi and Ali Rezaeian Sabbagh

Wind as a major source of renewable energy has received tremendous attentions due to its unique features to reduce carbon emission and also to keep the environment safe…

231

Abstract

Purpose

Wind as a major source of renewable energy has received tremendous attentions due to its unique features to reduce carbon emission and also to keep the environment safe. Nevertheless, to use wind energy properly, the environmental circumstances and geographical location related to wind intensity should be considered as a priority. Different factors may affect the selection of a suitable location for developments of wind power plants; thus, these factors should be considered concurrently to identify the optimum location of wind plants.

Design/methodology/approach

In this study, first, basic data envelopment analysis (DEA) was used, then dual DEA was used and, finally, Anderson Petersen (AP) model of dual DEA was selected to prioritize cities or decision-making units (DMUs). Numerical Taxonomy (NT) method was also used to assess the validity of AP dual model in DEA. The prescribed approach was applied for five cities in East Azerbaijan province of Iran.

Findings

The results indicate that wind power as a renewable energy can be harnessed in few cities, and the ranking by DEA illustrated that the city of Tabriz is the first priority.

Practical implications

Low environmental degradation effects in comparison to other methods and the ability to utilization at a widespread level include the benefits of using wind energy in the generation of electricity. In this regard, the study of relevant potentials and finding suitable locations for the deployment of wind energy utilization equipment are essential. Using DEA method helps us to choose optimal locations according to different criteria.

Social implications

Wind energy is justifiable in reducing social costs in comparison with fossil fuel plants, which includes negative effects, and its electricity can be used as a sustainable energy in the country's economic, social and cultural development.

Originality/value

For identifying the most proper location for development of wind power plants in Iran, DEA is applied for the first time to prioritize the suitable locations for installations of wind turbines among five different cities in the East Azerbaijan region. A number of crucial factors including land price, distance to power, rate of natural hazards, wind speed and topography are considered for location optimization of wind turbines for the first time. Also, to validate the results of DEA method, NT method is used to assess the validity of AP dual model in DEA.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 June 2013

Rafooneh Mokhtarshahi Sani and Payam Mahasti Shotorbani

In recent decades, Iranian vernacular architecture has defined the local architectural identity by demonstrating distinctive characteristics. Defining such a critical role for…

Abstract

In recent decades, Iranian vernacular architecture has defined the local architectural identity by demonstrating distinctive characteristics. Defining such a critical role for vernacular studies has led to different approaches in the design of the contemporary architecture of Iran. The first approach of integrating vernacular and contemporary designs has focused on local people, their needs, local construction, and building materials. The revival of vernacular architectural design and building elements has been at the forefront of this approach in Iran. However, recent use in Iran has concentrated on the symbolic/abstract reuse of vernacular building forms. Vernacular architecture is known to merely provide for the functional requirements of buildings, and not for aesthetic purposes. Conversely, in the second approach, vernacular building elements are considered to be symbols of local identity. This paper will argue that although the symbolic reuse of vernacular features may not uphold the functional expectations of the vernacular form, this reuse is useful in reviving architectural identity. In addition, underscoring such a different role for vernacular building features in contemporary architecture might help to expand the realm of vernacular studies. Thus, the purpose of this paper is to provide an overview of the conversion of vernacular architecture in Iran by focusing on the instance of wind-catchers. Wind-catchers typically were used in residential buildings and are considered potent symbols of climate adaptation. In contemporary architecture, however, a form of wind-catcher has been used as a symbol for local architectural identity. Through this transformation, the essential nature of the wind-catcher has found new life in the contemporary architecture of Iran.

Details

Open House International, vol. 38 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 8000