Search results

1 – 10 of over 3000
Article
Publication date: 5 August 2019

Tao Wang, Zhanli Liu, Yue Gao, Xuan Ye and Zhuo Zhuang

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on…

170

Abstract

Purpose

The interaction between hydraulic fracture (HF) and natural fracture (NF) in naturally fractured rocks is critical for hydraulic fracturing. This paper aims to focus on investigating the development of tensile and shear debonding zone on the NF caused by the stresses produced by HF, and the influence of NF’s debonding behavior on the interaction between HF and NF.

Design/methodology/approach

Theoretically, tensile and shear debonding modes of NF are considered, two dimensionless parameters are proposed to characterize the difficulty of tensile and shear failure of NF, respectively. Numerically, a finite element model combining the extended finite element method and cohesive zone method (CZM) is proposed to study NF’s debonding behavior and its influence on the interaction between HF and NF.

Findings

Both theoretical analysis and numerical simulation show the existence of two debonding modes. The numerical results also show that the HF can cross, offset or propagate along the NFs depending on the parameters’ value, resulting in different fracture network and stimulated reservoir volume. When they are large, the NF’s debonding area is small, HF tends to cross the NF and the fracture network is simple; when they are small, the NF’s debonding area is large, HF will propagate along the NF. In addition, HF is easier to propagate along with NF under tensile debonding mode while it is easier to pass through NF under shear debonding mode.

Originality/value

The theoretical and numerical considerations are taken into account in the influence of the debonding of NFs on the interaction between HFs and NFs and the influence on the formation of the fracture network.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 January 2023

Yongliang Wang and Nana Liu

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this…

Abstract

Purpose

The unstable dynamic propagation of multistage hydrofracturing fractures leads to uneven development of the fracture network and research on the mechanism controlling this phenomenon indicates that the stress shadow effects around the fractures are the main mechanism causing this behaviour. Further studies and simulations of the stress shadow effects are necessary to understand the controlling mechanism and evaluate the fracturing effect.

Design/methodology/approach

In the process of stress-dependent unstable dynamic propagation of fractures, there are both continuous stress fields and discontinuous fractures; therefore, in order to study the stress-dependent unstable dynamic propagation of multistage fracture networks, a series of continuum-discontinuum numerical methods and models are reviewed, including the well-developed extended finite element method, displacement discontinuity method, boundary element method and finite element-discrete element method.

Findings

The superposition of the surrounding stress field during fracture propagation causes different degrees of stress shadow effects between fractures and the main controlling factors of stress shadow effects are fracture initiation sequence, perforation cluster spacing and well spacing. The perforation cluster spacing varies with the initiation sequence, resulting in different stress shadow effects between fractures; for example, the smaller the perforation cluster spacing and well spacing are, the stronger the stress shadow effects are and the more seriously the fracture propagation inhibition arises. Moreover, as the spacing of perforation clusters and well spacing increases, the stress shadow effects decrease and the fracture propagation follows an almost straight pattern. In addition, the computed results of the dynamic distribution of stress-dependent unstable dynamic propagation of fractures under different stress fields are summarised.

Originality/value

A state-of-art review of stress shadow effects and continuum-discontinuum methods for stress-dependent unstable dynamic propagation of multiple hydraulic fractures are well summarized and analysed. This paper can provide a reference for those engaged in the research of unstable dynamic propagation of multiple hydraulic structures and have a comprehensive grasp of the research in this field.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 October 2023

Yongliang Wang and Nana Liu

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the…

Abstract

Purpose

Multi-well hydrofracturing is an important technology to create new fractures and expand existing fractures to increase reservoir permeability. The propagation morphology of the fracture network is affected by the disturbance between the fractures initiation sequences and spacings between adjacent wells. However, it remains unclear how well spacing and initiation sequences lead to fracture propagation, deflection and connection.

Design/methodology/approach

In this study, the thermal-hydro-mechanical coupling effect in the hydrofracturing process was considered, to establish a finite element-discrete element model of multistage hydrofracturing in a horizontal well. Using typical cases, the unstable propagation of hydraulic fractures in multiple horizontal wells was investigated under varying well spacing and initiation sequences. Combined with the shear stress shadow caused by in situ stress disturbed by fracture tip propagation, the quantitative indexes of fracture propagation such as length, volume, displacement vector, deflection and unstable propagation behavior of the hydrofracturing fracture network were analyzed.

Findings

The results show that the shear stress disturbance caused by multiple hydraulic fractures is a significant factor in multi-well hydrofracturing. Reducing the spacing between multiple wells increases the stress shadow area and aggravates the mutual disturbance and deflection between the fractures. The quantitative analysis results show that a decrease of well spacing reduces the total length of hydraulic fractures but increases the total volume of the fracture; compared with sequential and simultaneous fracturing, alternate fracturing can effectively reduce stress shadow area, alleviate fracture disturbance and generate larger fracture propagation length and volume.

Originality/value

The numerical models and results of the unstable propagation and stress evolution of the hydraulic fracture network under thermal-hydro-mechanical coupling obtained in this study can provide useful guidance for the evaluation and design of rock mass fracture networks in deep unconventional oil and gas reservoirs.

Abstract

Details

Politics and the Life Sciences: The State of the Discipline
Type: Book
ISBN: 978-1-78441-108-4

Article
Publication date: 5 December 2016

Samarth D. Patwardhan, Fatemeh Famoori and Suresh Kumar Govindarajan

This paper aims to review the quad-porosity shale system from a production standpoint. Understanding the complex but coupled flow mechanisms in such reservoirs is essential to…

Abstract

Purpose

This paper aims to review the quad-porosity shale system from a production standpoint. Understanding the complex but coupled flow mechanisms in such reservoirs is essential to design appropriate completions and further, optimally produce them. Dual-porosity and dual permeability models are most commonly used to describe a typical shale gas reservoir.

Design/methodology/approach

Characterization of such reservoirs with extremely low permeability does not aptly capture the physics and complexities of gas storage and flow through their existing nanopores. This paper reviews the methods and experimental studies used to describe the flow mechanisms of gas through such systems, and critically recommends the direction in which this work could be extended. A quad-porosity shale system is defined not just as porosity in the matrix and fracture, but as a combination of multiple porosity values.

Findings

It has been observed from studies conducted that shale gas production modeled with conventional simulator/model is seen to be much lower than actually observed in field data. This paper reviews the various flow mechanisms in shale nanopores by capturing the physics behind the actual process. The contribution of Knudson diffusion and gas slippage, gas desorption and gas diffusion from Kerogen to total production is studied in detail.

Originality/value

The results observed from experimental studies and simulation runs indicate that the above effects should be considered while modeling and making production forecast for such reservoirs.

Details

World Journal of Engineering, vol. 13 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 January 2024

John Pearson

This paper aims to consider the potential implications of the layering of regulation in relation to hydraulic fracturing (fracking) at the borders between the nations of the UK.

Abstract

Purpose

This paper aims to consider the potential implications of the layering of regulation in relation to hydraulic fracturing (fracking) at the borders between the nations of the UK.

Design/methodology/approach

This paper uses a qualitative research method grounded in particular in legal geography to examine the existing approaches to regulating hydraulic fracturing and identify the places and their features that are constructed as a result of their intersection at the borders of the nations comprising the UK.

Findings

The current regulatory framework concerning hydraulic fracturing risks restricts the places in which the practice can occur in such a manner as to potentially cause greater environmental harm should the process be used. The regulations governing the process are not aligned in relation to the surface and subsurface aspects of the process to enable their management, once operational, as a singularly constructed place of extraction. Strong regulation at the surface can have the effect of influencing placement of the site only in relation to the place at which the resource sought reaches the surface, whilst having little to no impact on the environmental harms, which will result at the subsurface or relative to other potential surface site positions, and potentially even increasing them.

Research limitations/implications

This paper is limited by uncertainty as to the future use of hydraulic fracturing to extract oil and gas within the UK. The issues raised within it would also be applicable to other extractive industries where a surface site might be placed within a radius of the subsurface point of extraction, rather than having to be located at a fixed point relative to that in the subsurface. This paper therefore raises concerns that might be explored more generally in relation to the regulation of the place of resource extraction, particularly at legal borders between jurisdictions, and the impact of regulation, which does not account for the misalignment of regulation of spaces above and below the surface that form a single place at which extraction occurs.

Social implications

This paper considers the potential impacts of misaligned positions held by nations in the UK in relation to environmentally harmful practices undertaken by extractive industries, which are highlighted by an analysis of the extant regulatory framework for hydraulic fracturing.

Originality/value

Whilst the potential for cross internal border extraction of gas within the UK via hydraulic fracturing and the regulatory consequences of this has been highlighted in academic literature, this paper examines the implications of regulation for the least environmentally harmful placement of the process.

Details

Journal of Place Management and Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8335

Keywords

Article
Publication date: 25 March 2019

Wei Zhang, Peitong Cong, Kang Bian, Wei-Hai Yuan and Xichun Jia

Understanding the fluid flow through rock masses, which commonly consist of rock matrix and fractures, is a fundamental issue in many application areas of rock engineering. As the…

Abstract

Purpose

Understanding the fluid flow through rock masses, which commonly consist of rock matrix and fractures, is a fundamental issue in many application areas of rock engineering. As the equivalent porous medium approach is the dominant approach for engineering applications, it is of great significance to estimate the equivalent permeability tensor of rock masses. This study aims to develop a novel numerical approach to estimate the equivalent permeability tensor for fractured porous rock masses.

Design/methodology/approach

The radial point interpolation method (RPIM) and finite element method (FEM) are coupled to simulate the seepage flow in fractured porous rock masses. The rock matrix is modeled by the RPIM, and the fractures are modeled explicitly by the FEM. A procedure for numerical experiments is then designed to determinate the equivalent permeability tensor directly on the basis of Darcy’s law.

Findings

The coupled RPIM-FEM method is a reliable numerical method to analyze the seepage flow in fractured porous rock masses, which can consider simultaneously the influences of fractures and rock matrix. As the meshes of rock matrix and fracture network are generated separately without considering the topology relationship between them, the mesh generation process can be greatly facilitated. Using the proposed procedure for numerical experiments, which is designed directly on the basis of Darcy’s law, the representative elementary volume and equivalent permeability tensor of fractured porous rock masses can be identified conveniently.

Originality/value

A novel numerical approach to estimate the equivalent permeability tensor for fractured porous rock masses is proposed. In the approach, the RPIM and FEM are coupled to simulate the seepage flow in fractured porous rock masses, and then a numerical experiment procedure directly based on Darcy’s law is introduced to estimate the equivalent permeability tensor.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 2001

Olaf Kolditz

This paper deals with theory and computation of fluid flow in fractured rock. Non‐Darcian flow behavior was observed in pumping tests at the geothermal research site at…

1609

Abstract

This paper deals with theory and computation of fluid flow in fractured rock. Non‐Darcian flow behavior was observed in pumping tests at the geothermal research site at Soultz‐sous‐Forêts (France). Examples are examined to demonstrate the influence of fracture roughness and pressure‐gradient dependent permeability on pressure build‐up. A number of test examples based on classical models are investigated, which may be suited as benchmarks for non‐linear flow. This is a prelude of application of the non‐linear flow model to real pumping test data. Frequently, conceptual models based on simplified geometric approaches are used. Here, a realistic fracture network model based on borehole data is applied for the numerical simulations. The obtained data fit of the pumping test shows the capability of fracture network models to explain observed hydraulic behavior of fractured rock systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 October 2018

Xiaoming Tian and Pingchuan Dong

In petroleum industry, hydraulic fracturing is essential to enhance oil productivity. The hydraulic fractures are usually generated in the process of hydraulic fracturing…

Abstract

Purpose

In petroleum industry, hydraulic fracturing is essential to enhance oil productivity. The hydraulic fractures are usually generated in the process of hydraulic fracturing. Although some mathematical models were proposed to analyze the well-flow behavior of conventional fracture, there are few models to depict unconventional fracture like reorientation fracture. To figure out the effect of reorientation fracture on production enhancement and guide the further on-site operating, this paper aims to investigate the well-flow behavior of vertical reorientation fracture in horizontal permeability anisotropic reservoir.

Design/methodology/approach

Based on the governing equation considering horizontal permeability anisotropy, the mathematical models for reorientation fractures in infinite reservoir are developed by using the principle of superposition. Furthermore, a rectangular closed drainage area is also considered to investigate the well-flow behavior of reorientation fracture, and the mathematical models are developed by using Green’s and source functions.

Findings

Computational results indicate that the flux distribution of infinite conductivity fracture is uniform at very early times. After a period, it will stabilize eventually. High permeability anisotropy and small inclination angle of reorientation will cause significant end point effect in the infinite conductivity fracture. The reorientation fractures with small inclination angle in high anisotropic reservoir are capable of improving 1-1.5 times more oil productivity in total.

Originality/value

This paper develops the mathematical methods to study the well-flow behavior for unconventional fracture, especially for reorientation fracture. The results validate the production enhancement effect of reorientation fracture and identify the sensitive parameters of productivity.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2022

Yongliang Wang and Xin Zhang

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources…

Abstract

Purpose

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources recovery rate. Due to the complexity of fracture network induced by the random morphology and type of fluid-driven fractures, controlling and optimising its mechanisms is challenging. This paper aims to study the types of multiscale mode I/II fractures, the fluid-driven propagation of multiscale tensile and shear fractures need to be studied.

Design/methodology/approach

A dual bilinear cohesive zone model (CZM) based on energy evolution was introduced to detect the initiation and propagation of fluid-driven tensile and shear fractures. The model overcomes the limitations of classical linear fracture mechanics, such as the stress singularity at the fracture tip, and considers the important role of fracture surface behaviour in the shear activation. The bilinear cohesive criterion based on the energy evolution criterion can reflect the formation mechanism of complex fracture networks objectively and accurately. Considering the hydro-mechanical (HM) coupling and leak-off effects, the combined finite element-discrete element-finite volume approach was introduced and implemented successfully, and the results showed that the models considering HM coupling and leak-off effects could form a more complex fracture network. The multiscale (laboratory- and engineering-scale) Mode I/II fractures can be simulated in hydrofracturing process.

Findings

Based on the proposed method, the accuracy and applicability of the algorithm were verified by comparing the analytical solution of KGD and PKN models. The effects of different in situ stresses and flow rates on the dynamic propagation of hydraulic fractures at laboratory and engineering scales were investigated. when the ratio of in situ stress is small, the fracture propagation direction is not affected, and the fracture morphology is a cross-type fracture. When the ratio of in situ stress is relatively large, the propagation direction of the fracture is affected by the maximum in situ stress, and it is more inclined to propagate along the direction of the maximum in situ stress, forming double wing-type fractures. Hydrofracturing tensile and shear fractures were identified, and the distribution and number of each type were obtained. There are fewer hydraulic shear fractures than tensile fractures, and shear fractures appear in the initial stage of fracture propagation and then propagate and distribute around the perforation.

Originality/value

The proposed dual bilinear CZM is effective for simulating the types of Mode I/II fractures and seizing the fluid-driven propagation of multiscale tensile and shear fractures. Practical fracturing process involves the multi-type and multiscale fluid-driven fracture propagation. This study introduces general fluid-driven fracture propagation, which can be extended to the fracture propagation analysis of potential fluid fracturing, such as other liquids or supercritical gases.

1 – 10 of over 3000