Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 6 of 6
To view the access options for this content please click here
Article
Publication date: 12 September 2019

Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network

Isaac Dinaharan, Ramaswamy Palanivel, Natarajan Murugan and Rudolf Frans Laubscher

Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various…

HTML
PDF (1.7 MB)

Abstract

Purpose

Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various ceramic particles including B4C, TiC, SiC, Al2O3 and WC were incorporated as the dispersed phase within AA6082 aluminum alloy by FSP. The wear rate of the composite is then investigated experimentally by making use of a design of experiments technique where wear rate is evaluated as the output parameter. The input parameters considered include tool rotational speed, traverse speed, groove width and ceramic particle type. An artificial neural network (ANN) simulation was then used to describe the wear rate of the surface composites. The weights of the network were adjusted to minimize the mean squared error using a feed forward back propagation technique. The effect of the individual input parameters on wear rate was then inferred from the ANN models. Trends are presented and related to the associated microstructures observed. The TiC infused AMC displayed the lowest wear rate whereas the Al2O3 infused AMC displayed the highest, within the scope of the current investigation. The paper aims to discuss these issues.

Design/methodology/approach

The paper used ANN for the research study.

Findings

The finding of this paper is that the wear rate of AA6063 aluminum surface composites is influenced remarkably by FSP parameters.

Originality/value

Original work of authors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/MMMS-05-2019-0102
ISSN: 1573-6105

Keywords

  • Artificial neural network
  • Wear rate
  • Friction stir processing
  • Aluminum matrix composites

To view the access options for this content please click here
Article
Publication date: 23 March 2012

Corrosion analysis of GTA welded metal matrix composites

Palaniswamy Venugopal and Natarajan Murugan

The SiC reinforced Al composite is perhaps the most successful class of metal matrix composites (MMCs) produced to date. They have found widespread application for…

HTML
PDF (404 KB)

Abstract

Purpose

The SiC reinforced Al composite is perhaps the most successful class of metal matrix composites (MMCs) produced to date. They have found widespread application for aerospace, energy, and military purposes, as well as in other industries – for example, they have been used in electronic packaging, aerospace structures, aircraft and internal combustion engine components, and a variety of recreational products. In all these applications, welding plays a vital role. Little attention has been paid to SiC reinforced aluminium matrix composites joined by gas tungsten arc (GTA) welding. The purpose of this paper is to outline the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs.

Design/methodology/approach

This paper focuses upon production and welding of metal matrix composites. The welded composites have been treated at elevated and cryogenic temperatures for experimental studies. Pitting corrosion analysis of welded plates was carried out as per Box Benkehn Design.

Findings

From the results, it should be noted that maximum pitting resistance was observed with MMCs containing 10% SiC treated at cryogenic temperature. Corrosion resistance of welded composites treated at elevated temperature was found to be higher than that of as‐welded and at cryogenic temperature treated composites. The pitting potential increases with increase in % SiC to certain level and decreases with further increase in % SiC. Corrosion potential of composites treated at elevated temperature is high compared to other composites. Maximum pitting resistance is observed when the welding current was kept at 175 amps for 10% addition of SiC in LM25 matrix treated at cryogenic temperature.

Originality/value

The paper outlines the manufacturing method for producing MMCs, GTA welding of MMCs and pitting corrosion analysis of welded MMCs. The results obtained may be helpful for the automobile and aerospace industries.

Details

Journal of Engineering, Design and Technology, vol. 10 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/17260531211211908
ISSN: 1726-0531

Keywords

  • Composite materials
  • Pitting corrosion
  • Gas tungsten‐arc welding
  • Metal matrix composites
  • Stir casting
  • Cryogenic temperature
  • Elevated temperature

Content available
Article
Publication date: 23 March 2012

Editorial

Theo C. Haupt

HTML

Abstract

Details

Journal of Engineering, Design and Technology, vol. 10 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/jedt.2012.34310aaa.001
ISSN: 1726-0531

To view the access options for this content please click here
Article
Publication date: 2 December 2019

Effect of current pulsing on super 304HCu weld joints

Vinoth Kumar M. and Balasubramanian V.

Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In…

HTML
PDF (3.4 MB)

Abstract

Purpose

Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In general, austenitic stainless steels welded by conventional constant current gas tungsten arc welding (CC-GTAW) produce coarse columnar grains, alloy segregation and may result in inferior mechanical properties. Pulsed current gas tungsten arc welding (PC-GTAW) can control the solidification structure by altering the prevailing thermal gradients in the weld pool.

Design/methodology/approach

Super 304HCu tubes of Ø 57.1 mm and the wall thickness of 3.5 mm were autogenously welded using CC and PC-GTAW processes. Joints are characterized using optical microscopy, electron microscopy, energy dispersive spectroscopy and electron backscatter diffraction (EBSD) techniques. Hot tensile properties of the weld joints were evaluated and correlated with their microstructural features.

Findings

Current pulsing in GTAW has resulted in minimal eutectic film segregation, lower volume % of delta ferrite and appreciable improvement in tensile properties than CC-GTAW joints.

Originality/value

The EBSD boundary map and inverse pole orientation map of Super 304HCu weld joints evidence the grain refinement and much frequent high angle grain boundaries achieved using weld current pulsing.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
DOI: https://doi.org/10.1108/WJE-07-2019-0207
ISSN: 1708-5284

Keywords

  • Super 304HCu super austenitic stainless steel
  • Gas tungsten arc welding
  • Pulsed current
  • Hot tensile properties
  • EBSD analysis

To view the access options for this content please click here
Article
Publication date: 16 September 2013

Machining parameter optimisation of an aluminium hybrid metal matrix composite by statistical modelling

N. Radhika, R. Subramaniam and S. Babudeva senapathi

The objective of this research is focused on the design of a new hybrid composite as well as to analyse the optimum turning conditions to minimise the surface roughness…

HTML
PDF (489 KB)

Abstract

Purpose

The objective of this research is focused on the design of a new hybrid composite as well as to analyse the optimum turning conditions to minimise the surface roughness and work piece surface temperature, thereby increasing the productivity.

Design/methodology/approach

Mechanical properties such as hardness and tensile strength of Al-Si10Mg alloy reinforced with 3, 6 and 9 wt.% of alumina along with 3 wt.% of graphite prepared by stir casting method have been evaluated. The present study addresses the machinability parameter optimisation of Al alloy-9 per cent alumina-3 per centgraphite. Experiments were conducted based on the Taguchi parameter design by varying the feed (0.1, 0.15 and 0.2 mm/rev), cutting speed (200, 250 and 300 m/min) and depth of cut (0.5, 1.0 and 1.5 mm). The results were then analysed using analysis of variance (ANOVA).

Findings

Mechanical properties of the hybrid composite increases with reinforcement content. The surface roughness decreases with increasing cutting speed and conversely increases with increasing feed and depth of cut. The work piece surface temperature increases as cutting speed, feed and depth of cut increases. The ANOVA result reveals that feed plays a major role in minimising both surface roughness and surface temperature of work piece. The cutting speed and depth of cut follow feed in the order of importance, respectively.

Research limitations/implications

The vibration of the machine tool is a factor which may contribute to poor quality characteristics. This factor has not taken been into account in this analysis since major vibrations in the machine are induced due to the machining process.

Practical implications

Design and development of new hybrid metal matrix composites (HMMCs) with a detailed analysis on machining conditions. The findings could help in the production of composite with a higher degree of surface finish. This will enable the adoption of HMMCs as industrial product for mass scale production.

Originality/value

Good quality characteristics were achieved using optimum machining conditions arrived using a statistical modelling.

Details

Industrial Lubrication and Tribology, vol. 65 no. 6
Type: Research Article
DOI: https://doi.org/10.1108/ILT-01-2011-0008
ISSN: 0036-8792

Keywords

  • Hybrid metal matrix composites
  • Taguchi parameter design
  • Composite machining
  • Analysis of variance
  • Surface roughness
  • Surface properties of materials
  • Metals

To view the access options for this content please click here
Article
Publication date: 19 June 2017

A comprehensive review of fuzzy-based clustering techniques in wireless sensor networks

Manjeet Singh and Surender Kumar Soni

This paper aims to discuss a comprehensive survey on fuzzy-based clustering techniques. The determination of an appropriate sensor node as a cluster head straightforwardly…

HTML
PDF (2.8 MB)

Abstract

Purpose

This paper aims to discuss a comprehensive survey on fuzzy-based clustering techniques. The determination of an appropriate sensor node as a cluster head straightforwardly affects a network’s lifetime. Clustering often possesses some uncertainties in determining suitable sensor nodes as a cluster head. Owing to various variables, selection of a suitable node as a cluster head is a perplexing decision. Fuzzy logic is capable of handling uncertainties and improving decision-making processes even with insufficient information. Then, state-of-the-art research in the field of clustering techniques has been reviewed.

Design/methodology/approach

The literature is presented in a tabular form with merits and limitations of each technique. Furthermore, the various techniques are compared graphically and classified in a tabular form and the flowcharts of important algorithms are presented with pseudocodes.

Findings

This paper comprehends the importance and distinction of different fuzzy-based clustering methods which are further supportive in designing more efficient clustering protocols.

Originality/value

This paper fulfills the need of a review paper in the field of fuzzy-based clustering techniques because no other paper has reviewed all the fuzzy-based clustering techniques. Furthermore, none of them has presented literature in a tabular form or presented flowcharts with pseudocodes of important techniques.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/SR-11-2016-0254
ISSN: 0260-2288

Keywords

  • Energy efficiency
  • Wireless sensor networks
  • Cluster head
  • Fuzzy-based clustering

Access
Only content I have access to
Only Open Access
Year
  • All dates (6)
Content type
  • Article (6)
1 – 6 of 6
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here