Search results

1 – 10 of 96
Article
Publication date: 5 March 2018

Osama Abdel Hakeim, Asmaa Ahmed Arafa, Magdy Kandil Zahran and Laila Abdel Wahab Abdou

The purpose of this paper is to prepare ultra-violet (UV)-curable inkjet inks for textile printing application. The influence of both type and component ratio of monomer/oligomer…

Abstract

Purpose

The purpose of this paper is to prepare ultra-violet (UV)-curable inkjet inks for textile printing application. The influence of both type and component ratio of monomer/oligomer on the quality of the desired viscosity range is studied. Moreover, the effect of pigment/resin ratio on the rheological behaviour of the ink has been studied.

Design/methodology/approach

Aqueous dispersions of nanoscale organic pigments were prepared through ball milling and ultrasonication. The dispersed pigments were encapsulated into UV-curable resin via miniemulsion technique, using different types and component ratios of monomers and oligomers.

Findings

It was found that the monomer/oligomer ratio of 2:3 and the pigment/resin ratio of 2:1 gave the most stable miniemulsion dispersions and provided the most suitable rheological range for inkjet printing inks.

Research limitations/implications

As the rheology of the ink is optimised, most of the problems associated with the jetting process could be avoided.

Practical implications

This method of using UV-curable encapsulated inks eliminates the usage of binders, which are the principal factor for nozzle clogging of the print head. In addition, binders are responsible for the coarse handle of the printed textiles.

Social implications

The UV-curable inks were viewed as a green technology by the US Environmental Protection Agency.

Originality/value

This method is simple and fast and requires low cost. In addition, it could find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 January 2012

Shai Fu, Kai Zhang, Mingjun Zhhang and Li Tian

The purpose of this paper is to provide a novel method for encapsulation of phthalocyanine blue pigment for inkjet printing inks.

Abstract

Purpose

The purpose of this paper is to provide a novel method for encapsulation of phthalocyanine blue pigment for inkjet printing inks.

Design/methodology/approach

Phthalocyanine blue pigment was encapsulated by emulsion polymerisation of styrene and a polymerisable dispersant, allyloxy nonyl‐phenoxy propanol polyoxyethylene ether ammonium sulphonate (ANPS). The encapsulated phthalocyanine blue pigment was further formulated into dispersion. The encapsulated phthalocyanine blue pigment was characterised with transmission electron microscopy (TEM), thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Zeta potential and contact angle measurements. The encapsulated phthalocyanine blue pigment dispersion was evaluated in terms of rheological behaviour, particle size distribution and stability.

Findings

TEM and TGA proved that polymer encapsulation layer was formed onto phthalocyanine blue pigment surface. XRD indicated that the crystal structure of phthalocyanine blue pigment was not changed during the encapsulation process. The wettability of phthalocyanine blue pigment was improved after polymer encapsulation. The dispersion formulated with encapsulated phthalocyanine blue pigment had a narrow particle size distribution, excellent stability to temperature and centrifugal forces. Its rheological behaviour was close to Newtonian fluid.

Practical implications

The methods provided a novel and practical solution for preparing the encapsulated phthalocyanine blue pigment dispersion for formulation of inkjet printing ink.

Originality/value

The paper demonstrates how emulsion polymerisation technique is employed to encapsulate phthalocyanine blue pigment using a polymerisable dispersant, ANPS, which imparts to dispersion a small particle size, narrow particle size distribution and high stability.

Details

Pigment & Resin Technology, vol. 41 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2023

Xia Sun, Jianben Xu, Caili Yu and Faai Zhang

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level…

Abstract

Purpose

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level and monomer ratio of the dispersant.

Design/methodology/approach

The dispersant was synthesized by conventional radical polymerization using methacrylic acid, butyl acrylate and dimethylamino ethyl methacrylate as the monomer. It was characterized by Fourier transform infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, gel permeation chromatography and thermogravimetric analysis. The dispersant was used to disperse TiO2, and the performance of the dispersant was evaluated by measuring the viscosity, particle size and dispersive force of the slurry.

Findings

The dispersant exhibited high thermal stability and was successfully anchored to the surface of the TiO2 pigment. When used to disperse a TiO2 slurry, it effectively made the TiO2 slurry more fluid, indicating its strong viscosity-reducing properties. The viscosity, particle sizes and dispersion capabilities of the TiO2 slurry were found to vary depending on the contents and monomer ratios of the dispersant.

Research limitations/implications

P(MAA-BA-DM) dispersant increases the wettability of TiO2 only in oily solvents but not in aqueous solvents.

Practical implications

P(MAA-BA-DM) dispersant makes it easier to disperse TiO2 pigments in oily solvents, increasing the amount of pigment in the solvent and making the preparation of highly pigmented pastes easier.

Originality/value

A dispersant containing suitable carboxyl and tertiary amine groups was initially synthesized to disperse TiO2 in an oily system. The findings are anticipated to be used in the formulation of pigment concentrates, industrial coatings and other solvent-based coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 13 September 2011

321

Abstract

Details

Pigment & Resin Technology, vol. 40 no. 5
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 3 January 2017

Liping Zhang, Anli Tian, Chunxia Wang, Fushun Bai and Shaohai Fu

The purpose of this study is to prepare nanoscale copolymer-silicon dioxide (SiO2) dispersion for formulating textile printing white ink.

Abstract

Purpose

The purpose of this study is to prepare nanoscale copolymer-silicon dioxide (SiO2) dispersion for formulating textile printing white ink.

Design/methodology/approach

Nanoscale copolymer-SiO2 dispersion was prepared via miniemulsion polymerization. The miniemulsion formulation was optimized for preparing stable SiO2/O/W miniemulsion and nanoscale copolymer-SiO2 dispersion. The nanoscale copolymer-SiO2 was investigated by transmission electron microscope (TEM), X-ray diffraction (XRD), differential thermal gravity (DTG) and thermogravimetric analysis (TGA). The performance of white inks from this colorant was further investigated.

Findings

Nanoscale copolymer-SiO2 had a core-shell structure with about 45 nm encapsulated copolymer layer when it was synthesized under optimal miniemulsion formulation 60 per cent mass ratio of styrene (St) to KH570-SiO2, 5.0 per cent hexadecane to St and 2.0 per cent concentration of DNS-86. The nanoscale copolymer-SiO2 white ink had high thermal and centrifugal stability with high purity and color fastness.

Research limitations/implications

The miniemulsion polymerization conditions required a careful control before favorable results could be achieved.

Practical implications

The nanoscale copolymer-SiO2 dispersion and white ink prepared by this method showed excellent stability. This research could accelerate the textiles inkjet printing application.

Originality/value

The reactive stabilizer DNS-86 is innovatively introduced into the miniemulsion polymerization to improve the stability of the nanoscale copolymer-SiO2 dispersion. The white ink was formulated from nanoscale copolymer-SiO2 to improve the fastness of the printed fabrics.

Details

Pigment & Resin Technology, vol. 46 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 June 2020

Mayya Ziganshina, Sergey Stepin, Sergey Karandashov and Veronika Mendelson

The purpose of this paper is to search for toxic anticorrosive pigments’ substitute in protective coatings is one of the important tasks that the specialists in the field of steel…

Abstract

Purpose

The purpose of this paper is to search for toxic anticorrosive pigments’ substitute in protective coatings is one of the important tasks that the specialists in the field of steel corrosion face.

Design/methodology/approach

One of the ways to solve the problem of metal corrosion is to use complex oxides as pigments, which are characterized as low-toxic compounds and possess the ability to inhibit corrosion.

Findings

In the production of ferrites, it is possible to use production waste as raw material, and that makes it possible to reduce the price of the resulting product and solve environmental problems simultaneously.

Originality/value

Permanent growth of world production is accompanied by the increasing environment corrosiveness, associated with the intensification of air, water basin and soil pollution by industrial waste. This, as well as the continuously increasing operated metal stock, has recently made the tendency of metals’ total loss from corrosion steadily increasing. All of this points to the importance of studying corrosion processes and the systematic and effective fight against metal corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 February 2020

Masoud Rahimian, Ehsan Saebnoori and S.A. Hassanzadeh-Tabrizi

The purpose of this paper is to synthesize and characterize nano-ceramic blue pigment Co0.5Zn0.5Al2O4 via polyacrylamide gel method. Generally, the high cost and the environmental…

Abstract

Purpose

The purpose of this paper is to synthesize and characterize nano-ceramic blue pigment Co0.5Zn0.5Al2O4 via polyacrylamide gel method. Generally, the high cost and the environmental toxicity of cobalt aluminate pigments lead them to become less common and cause problems in production process. To significantly reduce this problem, it is required to reduce the cobalt in the pigment and replace the cobalt with some amounts of zinc in the structure.

Design/methodology/approach

In this paper, calcination temperature and its effects on phase specification and color properties of final product were investigated. The powders were studied by using XRD, FESEM, TG/DTA, FTIR, UV-Vis and colorimetric in CIELab space, in which the calcination temperatures were set to 600°C, 800°C and 1,000 °C, and the inert atmosphere was air.

Findings

According to the XRD patterns, single-phase spinel structure with a good crystallinity was formed even in the low temperature. The infrared spectra displayed vibrations at about 500, 560 and 680 cm−1, which were ascribed to the spinel structure. FESEM images showed nanoscale particles with an average size of 32 nm. Regarding the Co2+ spin transitions in tetrahedral sites, the UV-Vis spectra presented three bands at 552, 598 and 628 nm.

Practical implications

The colorimetric data indicated the formation of blue pigments corresponding to negative values of b*. The color of pigments was affected by calcination temperature.

Originality/value

The characterization analysis shows that a blue pigment has been obtained in this research. Different degrees of blue color were obtained at different calcination temperatures.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 February 2021

Amruta Joglekar-Athavale and Ganapti S. Shankarling

The review glances upon the colorants used for printing on ceramic substrates by ink jet technology and techniques, chemistry involved during the selection of the colorants.

Abstract

Purpose

The review glances upon the colorants used for printing on ceramic substrates by ink jet technology and techniques, chemistry involved during the selection of the colorants.

Design/methodology/approach

The ink jet technology is an easy and a convenient technique, specially designed colorants are used for such applications with tailor made properties and features.

Findings

New developments in technology and chemistry of colorants to achieve successes in application studies of ceramic substrates.

Research limitations/implications

N/A.

Practical implications

This review glances upon the history, development and practical approach of the current techniques with available dyes and pigments and the techniques involved during the synthesis and application.

Originality/value

The review paper provides information about the development of the inkjet technique on ceramics and available colorants with methods.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 July 2015

N.P. Badgujar, Y.E. Bhoge, T.D. Deshpande, B.A. Bhanvase, P.R. Gogate, S.H. Sonawane and R.D. Kulkarni

– The present work aims to deal with ultrasound-assisted organic pigment (phthalocyanine blue and green) dispersion and its comparison with the conventional approach.

Abstract

Purpose

The present work aims to deal with ultrasound-assisted organic pigment (phthalocyanine blue and green) dispersion and its comparison with the conventional approach.

Design/methodology/approach

Ultrasound is expected to give beneficial results based on the strong shear forces generated by cavitational effects. The dispersion quality for preparation using an ultrasound-based method has been compared with dispersion obtained using high-speed dispersion mill. Effects of different operating parameters such as probe diameter and use of surfactants on the physical properties of dispersion and the colour strength have been investigated. Calculations for the energy requirement for two approaches have also been presented.

Findings

The use of sodium dodecyl sulphate and Tween 80 surfactants shows better performance in terms of the colour properties of dispersion prepared in water and organic solvent, respectively. Ultrasound gives better dispersion quality as compared to the conventional approach.

Originality/value

The present work presents a new approach of ultrasound-assisted dispersion of phthalocyanine blue and green pigments. Understanding into the effect of surfactants and type of solvent also presents new important design-related information.

Details

Pigment & Resin Technology, vol. 44 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2003

G.E. Thompson, P. Skeldon, X. Zhou, K. Shimizu, H. Habazaki and C.J.E. Smith

This paper reviews the role of alloying elements in aluminium and alloy fabrication on performance during surface treatment and surface finishing. Such elements may be present in…

2994

Abstract

This paper reviews the role of alloying elements in aluminium and alloy fabrication on performance during surface treatment and surface finishing. Such elements may be present in solid solution as fine segregates, strengthening phase and equilibrium phases. For surface treatment and finishes, which generally proceed in the presence of alumina film, knowledge of the processes proceeding at the alloy/film and film/electrolyte interfaces, and those within anodic alumina films, gives rise to the possibility of controlling features of nanoscale dimensions, for improved performance, arises. Its influence on nanotextures at treated surfaces and compositionally and morphologically modified films is explained briefly.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 96