Search results

1 – 10 of 43
Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 7 June 2021

Xudong He, GuangYi Yang, E. Yang, Moli Zhang, Dan Luo, Jingjian Liu, Chongnan Zhao, Qinhua Chen and Fengying Ran

Based on DNase I and reduced graphene oxide (rGO)-magnetic silicon microspheres (MNPS), a highly sensitive and selective fluorescent probe for the detection of PD-L1 was developed.

Abstract

Purpose

Based on DNase I and reduced graphene oxide (rGO)-magnetic silicon microspheres (MNPS), a highly sensitive and selective fluorescent probe for the detection of PD-L1 was developed.

Design/methodology/approach

Here °C we present a feasibility of biosensor to detection of PD-L1 in lung tumors plasma. In the absence of PD-L1°C the PD-L1 aptamer is absorbed on the surface of graphene oxide modified magnetic nanoparticles °8rGO-MNPS°9 and leading to effective fluorescence quenching. Upon adding PD-L1°C the aptamer sequences could be specifically recognized by PD-L1 and the aptamer/PD-L1 complex is formed°C resulting in the recovery of quenched fluorescence.

Findings

This sensor can detect PD-L1 with a linear range from 100 pg mL−1 to 100 ng mL−1, and a detection limit of 10 pg•m−1 was achieved.

Originality/value

This method provides an easy and sensitive method for the detection of PD-L1 and will be beneficial to the early diagnosis and prognosis of tumors.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 30 April 2021

Watcharaporn Wongsakoonkan, Sumate Pengpumkiat, Vorakamol Boonyayothin, Chaiyanun Tangtong, Wisanti Laohaudomchok and Wantanee Phanprasit

The purpose of this study was to develop an accurate, selective, low-cost and user-friendly colorimetric pad to detect formaldehyde at low concentration.

1098

Abstract

Purpose

The purpose of this study was to develop an accurate, selective, low-cost and user-friendly colorimetric pad to detect formaldehyde at low concentration.

Design/methodology/approach

1-phenyl-1,3-butanedione, a reactive chemical, was selected to develop the colorimetric pad for indoor air formaldehyde measurement. Silica nanoparticle impregnated with the reactive chemical was coated on the cellulose filter surface to increase the reactive site. A certified formaldehyde permeation tube was used to generate six varied concentrations between 0.01 and 0.10 ppm in a test chamber. The color intensity on the pads was measured using an image processing program to produce a formaldehyde concentration reading chart. The colorimetric pad was tested for optimum reaction time, accuracy, precision, stability, selectivity and shelf life.

Findings

The color of the pads changed from white to yellow and the color intensity varied with the concentrations and appeared to be stable after exposure to formaldehyde for 8 hours. At room temperature, the stability of the pad was 7 days, and shelf life was 120 days. The accuracy, precision and bias of the pad were 12.38%, 0.032 and 6.0%, respectively. Carbonyl compounds, benzene and toluene did not interfere with the reading of this developed colorimetric pad.

Originality/value

The developed colorimetric pad meets NIOSH's criteria for an overall accuracy of ±25%, bias = 10%. They were accurate at low concentrations, user-friendly and had low cost compared to an electronic direct reading instrument (cost of chemicals and materials was 21.50 Bath or 0.69 USD per piece) so that favorable for the use of general people for health protection.

Details

Journal of Health Research, vol. 36 no. 4
Type: Research Article
ISSN: 0857-4421

Keywords

Open Access
Article
Publication date: 28 April 2022

Krzysztof Jakub Stojek, Jan Felba, Damian Nowak, Karol Malecha, Szymon Kaczmarek and Patryk Tomasz Tomasz Andrzejak

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is…

Abstract

Purpose

This paper aims to perform thermal and mechanical characterization for silver-based sintered thermal joints. Layer quality affects thermal and mechanical performance, and it is important to achieve information about how materials and process parameters influence them.

Design/methodology/approach

Thermal investigation of the thermal joints analysis method was focused on determination of thermal resistance, where temperature measurements were performed using infrared camera. They were performed in two modes: steady-state analysis and dynamic analysis. Mechanical analysis based on measurements of mechanical shear force. Additional characterizations based on X-ray image analysis (image thresholding), optical microscope of polished cross-section and scanning electron microscope image analysis were proposed.

Findings

Sample surface modification affects thermal resistance. Silver metallization exhibits the lowest thermal resistance and the highest mechanical strength compared to the pure Si surface. The type of dynamic analysis affects the results of the thermal resistance.

Originality/value

Investigation of the layer quality influence on mechanical and thermal performance provided information about different joint types.

Details

Soldering & Surface Mount Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 4 May 2021

Nadeem Ahmad, Sirajuddin Ahmed, Viola Vambol and Sergij Vambol

All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also…

1538

Abstract

Purpose

All those effluent streams having compromised characteristics pose negative effects on the environment either directly or indirectly. Health care facilities and hospitals also generate a large amount of effluent like other industries containing harmful and toxic pharmaceutical residual compounds due to uncontrolled use of drugs, besides others. The occurrence of antibiotic in the environment is of utmost concern due to development of resistant genes. These get mixed up with ground and surface water due to lack of proper treatment of hospital wastewater. The effect of pharmaceutical compounds on human society and ecosystem as a whole is quite obvious. There are no strict laws regarding discharge of hospital effluent in many countries. Contrary to this, the authors do not have appropriate treatment facilities and solution to solve day by day increasing complexity of this problem. Moreover, water discharged from different health facilities having variable concentration often gets mixed with municipal sewage, thus remains partially untreated even after passing from conventional treatment plants. The purpose of this paper is to highlight the occurrences and fate of such harmful compounds, need of proper effluent management system as well as conventionally adopted treatment technologies nowadays all around the globe. This mini-review would introduce the subject, the need of the study, the motivation for the study, aim, objectives of the research and methodology to be adopted for such a study.

Design/methodology/approach

Hospital effluents consisting of pathogens, fecal coliforms, Escherichia coli, etc, including phenols, detergents, toxic elements like cyanide and heavy metals such as copper (Cu), iron (Fe), gadolinium (Gd), nickel (Ni), platinum (Pt), among others are commonly detected nowadays. These unwanted compounds along with emerging pollutants are generally not being regulated before getting discharged caused and spread of diseases. Various chemical and biological characteristics of hospital effluents are assessed keeping in the view the threat posed to ecosystem. Several research studies have been done and few are ongoing to explore the different characteristics and compositions of these effluent streams in comparison so as to suggest the suitable conventional treatment techniques and ways to manage the problem. Several antibiotic groups such as ciprofloxacin, ofloxacin, sulfa pyridine, trimethoprim, metronidazole and their metabolites are reported in higher concentration in hospital effluent. The aquatic system also receives a high concentration of pharmaceutical residues more than 14,000 μg/L from treatment plants also and other surface water or even drinking water in Indian cities. Many rivers in southern parts of India receives treated water have detected high concentration drugs and its metabolites. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream. The complexity of management and treatment as well need to be addressed with following issues at priority: composition and characterization of effluent, compatible and efficient treatment technology that needs to be adopted and the environment risk posed by them. The problem of drugs and its residues was not seen to be reported in latter part of 20th century, but it might be reported locally in some part of globe. This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays various industries and monitoring the efficiencies of existing treatment systems. This mini-review would introduce the subject, the need, the motivation and objectives of the study and methodology can be adopted for such a study.

Findings

The compiled review gives a complete view about the types of antibiotics used in different health care facilities, their residue formation, occurrences in different ecosystems, types of regulations or laws available in different counties related to disposal, different type of treatment technologies, innovative combined treatment schemes and future action needed to tackle such type of effluent after its generation. The thesis also highlights the use of certain innovative materials use for the treatment like nanoparticles. It also discusses about the residues impact on the human health as well as their bioaccumulative nature. If the authors relate the past to the current scenario of pharmaceutical compounds (PhACs) in the environment, the authors will certainly notice that many diseases are nowadays not curable by simple previously prescribed Ab. Many research projects have been done in European countries that have shown the risk of such residues like Pills, Sibell, Poseidon, No pills, Neptune, Knappe, Endetech, etc. In the previous section, it was mentioned that there are no stringent laws for hospital wastewater and in many countries, they are mixed with domestic wastewater. Many difficulties are there with this research due to complex analysis, detection of targeted Ab, affecting waterbodies rate of flow, nature of treatment varies with season to season. The way nature is being degraded and harmful effect are being imposed, it is important to take immediate and decisive steps in this area. Wastewater treatment plants (WWTPs) serves as a nursery for antibiotic-resistant systems, hence monitoring with great attention is also needed. Many trials with different treatment process, in combination, were considered. Many countries are paying great attention to this topic by considering the severity of the risk involved in it.

Research limitations/implications

Previous studies by several scientists show that the pharmaceutical residues in the discharged effluent displayed direct toxic effects, and sometimes, detrimental effects in the mixture were also observed. The discharge of untreated effluent from hospitals and pharmaceuticals and personal care products in the natural ecosystem poses a significant threat to human beings. The pharmaceuticals, like antibiotics, in the aquatic environment, accelerate the development of the antibiotic-resistant genes in bacteria, which causes fatal health risks to animals and human beings. Others, like analgesics, are known to affect development in fishes. They also degrade the water quality and may lead to DNA damage, toxicity in lower organisms like daphnia and have the potential to bioaccumulate. A few commonly used nanoadsorbents for water and wastewater treatment along with their specific properties can also be used. The main advantages of them are high adsorption capacity and superior efficiency, their high reusability, synthesis at room temperatures, super magnetism, quantum confinement effect as well as eco-toxicity. This review will focus on the applicability of different nanoscale materials and their uses in treating wastewater polluted by organic and inorganic compounds, heavy metals, bacteria and viruses. Moreover, the use of various nanoadsorbents and nano-based filtration membranes is also examined.

Practical implications

A number of different pharmaceutical residues derived from various activities like production facilities, domestic use and hospitals have been reported earlier to be present in groundwater, effluents and rivers, they include antibiotics, psycho-actives, analgesics, illicit drugs, antihistamine, etc. In past few years environmental scientists are more concerned toward the effluents generated from medical care facilities, community health centers and hospitals. Various chemical and biological characteristics of hospital effluents have been assessed keeping in the view the common threats pose by them to the entire ecosystem. In this study, seven multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics, high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into a sewage treatment plant (STP). Based on test results, two out of seven treatment technologies, i.e. MBR and CW effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in tertiary level by these two treatments.

Social implications

This review has aimed to identify the emerging contaminants, including pharmaceutical residues, highly consumed chemicals that are present in the hospital effluent, along with their physicochemical and biological characteristics. In this, the main objective was to review the occurrences and fate of common drugs and antibiotics present in effluents from hospital wastewaters. As far as global constraints that need to be discussed, there are only selected pharmaceuticals compounds generally analyzed, issue regarding management and detection based on method of sampling, frequency of analysis and observation, spatial as well as temporal concentration of these concerned micropollutants, accuracy in detecting these compounds, reliability of results and predictions, prioritization and the method of treatment in use for such type of wastewater stream are among the major issues (Akter et al., 2012; Ashfaq et al., 2016; García-Mateos et al., 2015; Liu et al., 2014; Mubedi et al., 2013; Prabhasankar et al., 2016; Sun et al., 2016; Suriyanon et al., 2015; Wang et al., 2016; Wen et al., 2004). This paper covers some aspect about the disposal and regulatory standard around the world toward hospital effluent discharge, its managements and treatment technologies that are adopted and best suitable nowadays.

Originality/value

This study many multispecialty hospitals with nonidentical pretreatment were selected for three aspects i.e. conventional wastewater characteristics high priority pharmaceuticals and microbial analyses. The present work is to evaluate efficacy of advanced wastewater treatment methods with regard to removal of these three aspects from hospital effluents before discharge into an STP. Based on test results, two out of different treatment effectively reducing conventional parameters and pharmaceuticals from secondary and tertiary treatments except regeneration of microbes were observed in the tertiary level by these two treatments were studies followed by ozonation and ultraviolet-ray treatment.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 5 June 2020

Krzysztof Jakub Stojek, Jan Felba, Johann Nicolics and Dominik Wołczyński

This paper aims to develop thermal analysis method of thermal joints characterization. The impact on convection on thermal resistance analysis with use thermography for…

Abstract

Purpose

This paper aims to develop thermal analysis method of thermal joints characterization. The impact on convection on thermal resistance analysis with use thermography for silver-based thermal joints were investigated for non-metallized and metalized semiconductor surfaces. Heat transfer efficiency depends on thermal conductivity; radiation was used to perform thermographic analysis; the convection is energy loss, so its removing might improve measurements accuracy.

Design/methodology/approach

Investigation of thermal joints analysis method was focused on determination of convection impact on thermal resistance thermographic analysis method. Measuring samples placed in vacuum chamber with lowered pressure requires transparent window for infrared radiation that is used for thermographic analysis. Impact of infrared window and convection on temperature measurements and thermal resistance were referred.

Findings

The results showed that the silicon window allowed to perform thermal analysis through, and the convection was heat transfer mode which create 15% energy loss.

Originality/value

It is possible to measure thermal resistance for silver-based thermal joints with convection eliminated to improve measurements accuracy.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 1 July 2020

Milena Kiliszkiewicz, Dariusz Przybylski, Jan Felba and Ryszard Korbutowicz

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive…

743

Abstract

Purpose

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive and dielectric layers are examined. Moreover, the capacitances of the obtained capacitors were examined.

Design/methodology/approach

Surface roughness and microscopic analysis were used to assess the quality of printed conductive structures. Two criteria were used to assess the quality of printed dielectric structures: the necessary lack of discontinuity of layers and minimal roughness. To determine the importance of printing parameters, a draft experimental method was proposed.

Findings

The optimal way to clean the substrate has been determined. The most important parameters for the dielectric layer (i.e. drop-space, table temperature, curing time and temperature) were found.

Research limitations/implications

If dielectric layers are printed correctly, most problems with printing complex electronic structures (transistors, capacitors) will be eliminated.

Practical implications

The tests performed identified the most important factors for dielectric layers. Using them, capacitors of repeatable capacity were printed.

Originality/value

In the literature on this subject, no factors were found which were responsible for obtaining homogeneous dielectric layers.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Abstract

Purpose

In addition to agriculture, energy production, and industries, potable water plays a significant role in many fields, further increasing the demand for potable water. Purification and desalination play a major role in meeting the need for clean drinking water. Clean water is necessary in different areas, such as agriculture, industry, food industries, energy generation and in everyday chores.

Design/methodology/approach

The authors have used the different search engines like Google Scholar, Web of Science, Scopus and PubMed to find the relevant articles and prepared this mini review.

Findings

The various stages of water purification include coagulation and flocculation, coagulation, sedimentation and disinfection, which have been discussed in this mini review. Using nanotechnology in wastewater purification plants can minimize the cost of wastewater treatment plants by combining several conventional procedures into a single package.

Social implications

In society, we need to avail clean water to meet our everyday, industrial and agricultural needs. Purification of grey water can meet the clean water scarcity and make the environment sustainable.

Originality/value

This mini review will encourage the researchers to find out ways in water remediation to meet the need of pure water in our planet and maintain sustainability.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 43