Search results

1 – 10 of 180
Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

24

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 March 2024

Ahmed EL Hana, Ahmed Hader, Jaouad Ait Lahcen, Salma Moushi, Yassine Hariti, Iliass Tarras, Rachid Et Touizi and Yahia Boughaleb

The purpose of the paper is to conduct a numerical and experimental investigation into the properties of nanofluids containing spherical nanoparticles of random sizes flowing…

Abstract

Purpose

The purpose of the paper is to conduct a numerical and experimental investigation into the properties of nanofluids containing spherical nanoparticles of random sizes flowing through a porous medium. The study aims to understand how the thermophysical properties of the nanofluid are affected by factors such as nanoparticle volume fraction, permeability of the porous medium, and pore size. The paper provides insights into the behavior of nanofluids in complex environments and explores the impact of varying conditions on key properties such as thermal conductivity, density, viscosity, and specific heat. Ultimately, the research contributes to the broader understanding of nanofluid dynamics and has potential implications for engineering and industrial applications in porous media.

Design/methodology/approach

This paper investigates nanofluids with spherical nanoparticles in a porous medium, exploring thermal conductivity, density, specific heat, and dynamic viscosity. Studying three compositions, the analysis employs the classical Maxwell model and Koo and Kleinstreuer’s approach for thermal conductivity, considering particle shape and temperature effects. Density and specific heat are defined based on mass and volume ratios. Dynamic viscosity models, including Brinkman’s and Gherasim et al.'s, are discussed. Numerical simulations, implemented in Python using the Langevin model, yield results processed in Origin Pro. This research enhances understanding of nanofluid behavior, contributing valuable insights to porous media applications.

Findings

This study involves a numerical examination of nanofluid properties, featuring spherical nanoparticles of varying sizes suspended in a base fluid with known density, flowing through a porous medium. Experimental findings reveal a notable increase in thermal conductivity, density, and viscosity as the volume fraction of particles rises. Conversely, specific heat experiences a decrease with higher particle volume concentration.xD; xA; The influence of permeability and pore size on particle volume fraction variation is a key focus. Interestingly, while the permeability of the medium has a significant effect, it is observed that it increases with permeability. This underscores the role of the medium’s nature in altering the thermophysical properties of nanofluids.

Originality/value

This paper presents a novel numerical study on nanofluids with randomly sized spherical nanoparticles flowing in a porous medium. It explores the impact of porous medium properties on nanofluid thermophysical characteristics, emphasizing the significance of permeability and pore size. The inclusion of random nanoparticle sizes adds practical relevance. Contrasting trends are observed, where thermal conductivity, density, and viscosity increase with particle volume fraction, while specific heat decreases. These findings offer valuable insights for engineering applications, providing a deeper understanding of nanofluid behavior in porous environments and guiding the design of efficient systems in various industrial contexts.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 January 2023

Amirul Syafiq, Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan and Nasrudin Abd. Rahim

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO)…

Abstract

Purpose

The purpose of this paper is to introduce the simple synthesis process of thermal-insulation coating by using three different nanoparticles, namely, nano-zinc oxide (ZnO), nano-tin dioxide (SnO2) and nano-titanium dioxide (TiO2), which can reduce the temperature of solar cells.

Design/methodology/approach

The thermal-insulation coating is designed using sol-gel process. The aminopropyltriethoxysilane/methyltrimethoxysilane binder system improves the cross-linking between the hydroxyl groups, -OH of nanoparticles. The isopropyl alcohol is used as a solvent medium. The fabrication method is a dip-coating method.

Findings

The prepared S1B1 coating (20 Wt.% of SnO2) exhibits high transparency and great thermal insulation property where the surface temperature of solar cells has been reduced by 13°C under 1,000 W/m2 irradiation after 1 h. Meanwhile, the Z1B2 coating (20 Wt.% of ZnO) reduced the temperature of solar cells by 7°C. On the other hand, the embedded nanoparticles have improved the fill factor of solar cells by 0.2 or 33.33%.

Research limitations/implications

Findings provide a significant method for the development of thermal-insulation coating by a simple synthesis process and low-cost materials.

Practical implications

The thermal-insulation coating is proposed to prevent exterior heat energy to the inside solar panel glass. At the same time, it can prevent excessive heating on the solar cell’s surface, later improves the efficiency of solar cell.

Originality/value

This study presents a the novel method to develop and compare the thermal-insulation coating by using various nanoparticles, namely, nano-TiO2, nano-SnO2 and nano-ZnO at different weight percentage.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2023

Khaled Mostafa, Heba Ameen, Amal El-Ebeisy and Azza El-Sanabary

Herein, this study aims to use our recently tailored and fully characterized poly acrylonitrile (AN)-starch nanoparticle graft copolymer having 60.1 graft yield percentage as a…

44

Abstract

Purpose

Herein, this study aims to use our recently tailored and fully characterized poly acrylonitrile (AN)-starch nanoparticle graft copolymer having 60.1 graft yield percentage as a starting substrate for copper ions removal from wastewater effluent after chemical modification with hydroxyl amine via oximation reaction as a calorimetric sensor.

Design/methodology/approach

The calorimetric sensor batch technique was used to determine the resin's adsorption capacity, while atomic adsorption spectrometry was used to determine the residual copper ions concentration in the filtrate before and after adsorption. This was done to convert the copolymer's abundant nitrile groups into amidoxime groups, and the resulting poly (amidoxime) resin was used as a copper ion adsorbent. To validate the existence of amidoxime groups, the resin was qualitatively characterized using a rapid vanadium ion test and instrumentally using Fourier transform infrared spectroscopy spectra and scanning electron microscopy morphological analysis.

Findings

At pH 7, 400 ppm copper ions concentration and 0.25 g adsorbent at room temperature, the overall adsorption potential of poly (amidoxime) resin was found to be 115.2 mg/g. The process's adsorption, kinetics and isothermal analysis were examined using various variables such as pH, contact time, copper ion concentration and adsorbent dose. To pretend the adsorption kinetics, various kinetics models, including pseudo-first-order and pseudo-second-order, were applied to the experimental results. The kinetic analysis indicated that the pseudo-second-order rate equation promoted the development of the chemisorption phase better than the pseudo-first-order rate equation. In the case of isothermal investigations, a study of observed correlation coefficient (R2) values indicated that the Langmuir model outperformed the Freundlich model in terms of matching experimental data.

Originality/value

To the best of the author's information, there is no comprehensive study for copper ions removal from waste water effluent using the recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 graft yield percentage as a starting substrate after chemical modification with hydroxyl amine via oximation reaction as a calorimetric sensor.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 July 2023

Reza Amini and Pooneh Kardar

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their…

Abstract

Purpose

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their effects on the anti-corrosion features in the presence of the eco-friendly ionic liquids (ILs).

Design/methodology/approach

In this research, PPy with different forms of nanoclay were used. Moreover, ILs additive is used to enhance the better dispersion process of clay and PPy nanoparticles in the resin.

Findings

As a result, the IL additive in the formulation of nano-composite coatings greatly improves the dispersion process of clay and PPy nanoparticles in the resin. Due to its high compatibility with polyurethane resin and clay and PPy nanoparticles, this additive contains a high dispersing power to disperse the investigated nanoparticles in the resin matrix.

Research limitations/implications

High polarity of ILs as well as abilities to dissolve both mineral and organic materials, they can provide the better chemical processes compared to common solvents.

Practical implications

IL abilities have not been discovered to a large extent such as catalysts and detectors.

Social implications

ILs have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity. Thus, they have received much attention as green media for various chemistry processes.

Originality/value

The simultaneous existence of clay, PPy and IL additive in the nano-composite coating formulation is responsible for the high corrosion resistance of the coating.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2023

Bekinew Kitaw Dejene and Tsige Mamo Geletaw

The textile industry is evolving toward nanotechnology, which provides materials with self-cleaning properties. This paper aims to provide a thorough explanation of the green…

Abstract

Purpose

The textile industry is evolving toward nanotechnology, which provides materials with self-cleaning properties. This paper aims to provide a thorough explanation of the green synthesis and mechanism of ZnO nanoparticles, with prospective applications of zinc oxide nanoparticles (ZnO NPs) in self-cleaning textiles.

Design/methodology/approach

This review introduces a green mechanism for the synthesis of ZnO NPs using plant extracts, their self-cleaning properties and the mechanisms of physical, chemical and biological self-cleaning actions for textile applications.

Findings

ZnO NPs are among the several nanoparticles that are beneficial for self-cleaning textiles because of their exceptional physical and chemical properties, although review publications addressing the use of ZnO NPs in textiles for self-cleaning are uncommon. These results indicate that the plant-synthesized ZnO NPs display excellent biological, physical and chemical self-cleaning properties, the mechanism of which involves photocatalysis, surface roughness and interactions between ZnO NPs and bacterial surfaces.

Originality/value

Nanoformulations of plant-synthesized ZnO have been reviewed to achieve promising self-cleaning textile properties and have not been reviewed earlier.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 180