Search results

1 – 7 of 7
Article
Publication date: 2 August 2011

Uda Hashim, Nazwa Taib, Thikra S. Dhahi and Azizullah Saifullah

Nanobiosensors based on nanogap capacitor are widely used for measuring dielectric properties of DNA, protein and biomolecule. The purpose of this paper is to report on the…

Abstract

Purpose

Nanobiosensors based on nanogap capacitor are widely used for measuring dielectric properties of DNA, protein and biomolecule. The purpose of this paper is to report on the fabrication and characterization polysilicon nanogap patterning using novelties technique.

Design/methodology/approach

Overall, the polysilicon nanogap pattern was fabricated based on conventional lithographic techniques. For size expansion technique, by employing simple dry thermal oxidation, the couple of nanogap pattern has been expanded to lowest nanogap value. The progress of nanogap pattern expansion was verified by using scanning electron microscopy (SEM). Conductivity, resistivity, and capacitance test were performed to characterize and to measure electrical behavior of full device fabrication.

Findings

SEM characterization emphasis on the expansion of polysilicon nanogap pattern increasing with respect to oxidation time. Electrical characterization shows that nanogap enhanced the sensitivity of the device at the value of nano ampere of current.

Originality/value

These simple least‐cost method does not require complicated nanolithography method of fabrication but still possible to serve as biomolecular junction. This approach can be applied extensively to different design of nanogap structure down to several nanometer levels of dimensions. A method of preparing a nanogap electrode according to the present innovation has an advantage of providing active surface that can be easily modified for immobilizations of biomolecules.

Details

Microelectronics International, vol. 28 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 January 2012

T.S. Dhahi, U. Hashim, M.E. Ali and Nazwa Taib

Nanogap electrodes have important applications in power saving devices, electrochemical sensors and dielectric detections of biomolecules. The purpose of this paper is to report…

Abstract

Purpose

Nanogap electrodes have important applications in power saving devices, electrochemical sensors and dielectric detections of biomolecules. The purpose of this paper is to report on the fabrication and characterization of polysilicon nanogap patterning using novelties technique.

Design/methodology/approach

Polysilicon material is used to fabricate the nanogap structure and gold is used for the electrode and two chrome masks are used to complete this work; the first mask for the nanogap pattern and a second mask for the electrode. The method is based on the control of the coefficients (temperature and time) with an improved pattern size resolution thermal oxidation.

Findings

Physical characterization by scanning electron microscopy (SEM) demonstrates such nanogap electrodes could be produced with high reproducibility and precision. Electrical characterization shows that nanogap enhanced the sensitivity of the device by increase the capacitance and the conductivity as well. They have also good efficiency of power consumption with high insulation properties.

Originality/value

With this technique, there are no principal limitations to fabricating nanostructures with different layouts down to several different nanometer dimensions. The paper documents the fabrication of nanogaps electrodes on a polysilicon, using low‐cost techniques such as vacuum deposition and conventional lithography. Polysilicon is a low‐cost materials and has desirable properties for semiconductor applications. A method of preparing a nanogap electrode according to the present innovation has an advantage of providing active surface that can easily be modified for immobilizations of biomolecules.

Details

Microelectronics International, vol. 29 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 April 2013

T.S. Dhahi, U. Hashim and M.E. Ali

The purpose of this paper was to systematically study the electrical properties of 5‐, 42‐ and 75‐nm gap polysilicon structures to evaluate the potentiality of these structures to…

Abstract

Purpose

The purpose of this paper was to systematically study the electrical properties of 5‐, 42‐ and 75‐nm gap polysilicon structures to evaluate the potentiality of these structures to be used in biomolecular sensing devices.

Design/methodology/approach

The authors previously reported the fabrication and morphological characterization of these structures. In this report, they electrically probed the presence of nanogap through current measurement. The effects of electrolytes on the capacitance profiles of these structures were systematically studied with air, water and various dilutions of phosphate buffer saline.

Findings

An increment in capacitance was found with the increment in electrolyte concentration. Improvement in current flow, capacitance, permittivity, and conductivity were observed with the smaller size nanogaps, suggesting their applications in low power consuming devices.

Originality/value

Since nanogap‐based dielectric biosensing devices need to be operated with a low level of current to avoid biomolecular damage, these structures should have potential applications in dielectric‐based biomolecular detection using a low cost dielectric analyser.

Details

Microelectronics International, vol. 30 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 20 June 2016

Yijun Teh, Asral Bahari Jambek and Uda Hashim

This paper aims to discuss a nanoscale biosensor and its signal analysis algorithms.

1111

Abstract

Purpose

This paper aims to discuss a nanoscale biosensor and its signal analysis algorithms.

Design/methodology/approach

In this work, five nanoscale biosensors are reviewed, namely, silicon nanowire field-effect-transistor biosensors, polysilicon nanogap capacitive biosensors, nanotube amperometric biosensors, gold nanoparticle-based electrochemical biosensors and quantum dot-based electrochemical biosensors.

Findings

Each biosensor produces a different output signal depending on its electrical characteristics. Five signal analysers are studied, with most of the existing signal analyser analyses based on the amplitude of the signal. Based on the analysis, auto-threshold peak detection is proposed for further work.

Originality/value

Suitability of the signal processing algorithm to be applied to nano-biosensors was reported.

Details

Sensor Review, vol. 36 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 July 2021

Mehdi Habibi, Yunus Dawji, Ebrahim Ghafar-Zadeh and Sebastian Magierowski

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling…

Abstract

Purpose

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used.

Design/methodology/approach

Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well.

Findings

Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays.

Originality/value

The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.

Article
Publication date: 29 April 2014

Tijjani Adam and U. Hashim

The purpose of this study is to present reports on fabrication of silicon (Si) nanowires (NWs). The study consists of microwire formation on silicon-on-insulator (SOI) that was…

Abstract

Purpose

The purpose of this study is to present reports on fabrication of silicon (Si) nanowires (NWs). The study consists of microwire formation on silicon-on-insulator (SOI) that was fabricated using a top-down approach which involved conventional photolithography coupled with shallow anisotropic etching.

Design/methodology/approach

A 5-inch p-type silicon-on-insulator (SOI) coated with 250nm layer and Photoresist (PR) with thickness of 400nm is coated in order to make pattern transfer via binary mask, after the exposure and development, a resist pattern between 3 μm-5 μm were obtained, Oxygen plasma spreen was used to reduce the size of the PR to 800 μm, after this, the wafer with 800 μm was loaded into SAMCO inductively coupled plasma (ICP)-RIE and got silicoon microwire was obtained. Next, the sample was put into an oxidation furnace for 15, 30, 45 and 60 minutes and the sample was removed and dipped into a buffered oxide etch solution for five minutes to remove all the SiO2 ashes.

Findings

The morphological characterization was conducted using scanning electron microscopy and atomic force microscopy. At terminal two, gold electrodes which were designated as source and drain were fabricated on top of individual NWs using conventional lithography electrical and chemical response. Once the trimming process has been completed, the device's current–voltage (I-V) characteristic was measured by using a Keithley 4200 semiconductor parameter analyser. Devices with different width of wires approximately 20, 40, 60 and 80 nm were characterized. The wire current variation as a function of the pH variation in voltage was investigated: pH monitoring for variations of pH values between 5 and 9.

Originality/value

This paper provides useful information on novel and yet simple cost-effective fabrication of SiNW; as such, it should be of interest to a broad readership, especially those interested in micro/nanofabrication.

Details

Microelectronics International, vol. 31 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 July 2019

Ghobad Behzadi Pour, Leila Fekri Aval and Parisa Esmaili

This study aims to investigate the fabrication of hydrogen gas sensor based on metal–oxide–semiconductor (MOS) microstructure. The palladium nanoparticles (PdNPs) as gate metal…

Abstract

Purpose

This study aims to investigate the fabrication of hydrogen gas sensor based on metal–oxide–semiconductor (MOS) microstructure. The palladium nanoparticles (PdNPs) as gate metal have been deposited on the oxide film using spin coating.

Design/methodology/approach

The PdNPs and the surface of oxide film were analyzed using Transmission electron microscopy. The capacitance-voltage (C-V) curves for the MOS sensor in 1, 2 and 4 per cent hydrogen concentration and in 100 KHz frequency at the room temperature were reported.

Findings

The response times for 1, 2 and 4 per cent hydrogen concentration were 2.5 s, 1.5 s and 1 s, respectively. The responses (R per cent) of MOS sensor to 1, 2 and 4 per cent hydrogen concentration were 42.8, 47.3 and 52.6 per cent, respectively.

Originality/value

The experimental results demonstrate that the MOS hydrogen gas sensor based on the PdNPs gate, shows the fast response and recovery compared to other hydrogen gas sensors based on the Pd.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 7 of 7