Search results

1 – 10 of 12
Article
Publication date: 22 February 2021

Zhimin Cao, Wenjun Zong, Junjie Zhang, Chunlei He, Jiaohu Huang, Wei Liu and Zhiyong Wei

This paper aims to reveal the tribochemical reaction mechanism on the nano-cutting interface between HMX crystal and diamond tool.

Abstract

Purpose

This paper aims to reveal the tribochemical reaction mechanism on the nano-cutting interface between HMX crystal and diamond tool.

Design/methodology/approach

Molecular dynamics simulation of HMX crystal nano-cutting by the reactive force field is carried out in this paper. The affinity of activated atoms and friction damage at the different interface have been well identified by comparing two cutting systems with diamond tool or indenter. The analyses of reaction kinetics, decomposition products and reaction pathways are performed to reveal the underlying atomistic origins of tribocatalytic reaction on the nano-cutting interface.

Findings

The HMX crystals only undergo damage and removal in the indenter cutting, while they appear to accelerate thermal decomposition in the diamond cutting. the C-O affinity is proved to be the intrinsic reason of the tribocatalytic reaction of the HMX-diamond cutting system. The reaction activation energy of the HMX crystals in the diamond cutting system is lower, resulting in a rapid increase in the decomposition degree. The free O atoms can induce the asymmetric ring-opening mode and change the decomposition pathways, which is the underlying atomistic origins of the thermal stability of the HMX-diamond cutting system.

Originality/value

This paper describes a method for analyzing the tribochemical behavior of HMX and diamond, which is beneficial to study the thermal stability in the nano-cutting of HMX.

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 July 2019

Lei Liu, Zongwei Xu, Dongyu Tian, Alexander Hartmaier, Xichun Luo, Junjie Zhang, Kai Nordlund and Fengzhou Fang

This paper aims to reveal the mechanism for improving ductile machinability of 3C-silicon carbide (SiC) and associated cutting mechanism in stress-assisted nanometric cutting.

Abstract

Purpose

This paper aims to reveal the mechanism for improving ductile machinability of 3C-silicon carbide (SiC) and associated cutting mechanism in stress-assisted nanometric cutting.

Design/methodology/approach

Molecular dynamics simulation of nano-cutting 3C-SiC is carried out in this paper. The following two scenarios are considered: normal nanometric cutting of 3C-SiC; and stress-assisted nanometric cutting of 3C-SiC for comparison. Chip formation, phase transformation, dislocation activities and shear strain during nanometric cutting are analyzed.

Findings

Negative rake angle can produce necessary hydrostatic stress to achieve ductile removal by the extrusion in ductile regime machining. In ductile-brittle transition, deformation mechanism of 3C-SiC is combination of plastic deformation dominated by dislocation activities and localization of shear deformation. When cutting depth is greater than 10 nm, material removal is mainly achieved by shear. Stress-assisted machining can lead to better quality of machined surface. However, there is a threshold for the applied stress to fully gain advantages offered by stress-assisted machining. Stress-assisted machining further enhances plastic deformation ability through the active dislocations’ movements.

Originality/value

This work describes a stress-assisted machining method for improving the surface quality, which could improve 3C-SiC ductile machining ability.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

145

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 October 2021

Amrita Maddamasetty, Kamesh Bodduru, Siva Bevara, Rukmini Srikant Revuru and Sanjay Kumar

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply…

Abstract

Purpose

Inconel 718 is difficult to machine due to its high toughness and study hardenability. Though the use of cutting fluids alleviates the problem, it is not sustainable. So, supply of a small quantity of specialized coolant to the machining zone or use of a solid lubricant is a possible solution. The purpose of the present work is to improve machinability of Inconel718 using graphene nanoplatelets.

Design/methodology/approach

In the present study, graphene is used in the machining of Inconel 718 alloy. Graphene is applied in the following two forms: as a solid lubricant and as an inclusion in cutting fluid. Graphene-based self-lubricating tool and graphene added nanofluids are prepared and applied to turning of Inconel 718 at varying cutting velocities. Performances are compared by measuring cutting forces, cutting temperature, tool wear and surface roughness.

Findings

Graphene, in both forms, showed superior performance compared to dry machining. In total, 0.3 Wt.% graphene added nanofluids showed the lowest cutting tool temperature and flank wear with 44.95% and 83.37% decrease, respectively, compared to dry machining and lowest surface roughness, 0.424 times compared to dry machining at 87 m/min.

Originality/value

Graphene could improve the machinability of Inconel 718 when used in tools as a solid lubricant and also when used as a dispersant in cutting fluid. Graphene used as a dispersant in cutting fluid is found to be more effective.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 December 2018

Talwinder Singh, J.S. Dureja, Manu Dogra and Manpreet S. Bhatti

The purpose of this paper is to investigate the influence of turning parameters such as cutting speed, feed rate and depth of cut on tool flank wear and machined surface quality…

Abstract

Purpose

The purpose of this paper is to investigate the influence of turning parameters such as cutting speed, feed rate and depth of cut on tool flank wear and machined surface quality of AISI 304 stainless steel during environment friendly turning under nanofluid minimum quantity lubrication (NMQL) conditions using PVD-coated carbide cutting inserts.

Design/methodology/approach

Turning experiments are conducted as per the central composite rotatable design under the response surface methodology. ANOVA and regression analysis are employed to examine significant cutting parameters and develop mathematical models for VB (tool flank wear) and Ra (surface roughness). Multi-response desirability optimization approach is used to investigate optimum turning parameters for simultaneously minimizing VB and Ra.

Findings

Optimal input turning parameters are observed as follows: cutting speed: 168.06 m/min., feed rate: 0.06 mm/rev. and depth of cut: 0.25 mm with predicted optimal output response factors: VB: 106.864 µm and Ra: 0.571 µm at the 0.753 desirability level. ANOVA test reveals depth of cut and cutting speed-feed rate interaction as statistically significant factors influencing tool flank wear, whereas cutting speed is a dominating factor affecting surface roughness. Confirmation tests show 5.70 and 3.71 percent error between predicted and experimental examined values of VB and Ra, respectively.

Research limitations/implications

AISI 304 is a highly consumed grade of stainless steel in aerospace components, chemical equipment, nuclear industry, pressure vessels, food processing equipment, paper industry, etc. However, AISI 304 stainless steel is considered as a difficult-to-cut material because of its high strength, rapid work hardening and low heat conductivity. This leads to lesser tool life and poor surface finish. Consequently, the optimization of machining parameters is necessary to minimize tool wear and surface roughness. The results obtained in this research can be used as turning database for the above-mentioned industries for attaining a better machined surface quality and tool performance under environment friendly machining conditions.

Practical implications

Turning of AISI 304 stainless steel under NMQL conditions results in environment friendly machining process by maintaining a dry, healthy, clean and pollution free working area.

Originality/value

Machining of AISI 304 stainless steel under vegetable oil-based NMQL conditions has not been investigated previously.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

Pradeep Kumar Patil and A I Khandwawala

The purpose of this paper is to measure the effect of rake angle on cutting forces on the rake face of single point cutting tool with two cutting conditions. The experimental…

220

Abstract

Purpose

The purpose of this paper is to measure the effect of rake angle on cutting forces on the rake face of single point cutting tool with two cutting conditions. The experimental setup has been developed to measure the cutting forces. The study aims to put forward the optimum cutting condition, which improves the product quality, surface finish, productivity and tool life.

Design/methodology/approach

The load cell-based tool dynamometer has been developed to measure the cutting forces. The experiments have performed on the mild steel bar of hardness 60 BHN. The friction and the normal forces have measured in dry cutting condition and with rust-X cutting fluids. The cutting forces for these two cutting conditions have calculated with constant depth of cut, speed and feed with different rake angles in the range of degrees 6, 7, 8, 9, 10, 11, 12, 15 and 20.

Findings

The experimental observations shows the variations of friction and normal forces with different cutting conditions and parameters. It shows the friction force on rake face increase and the normal force on the rake face decreases with increase the rake angle.

Research limitations/implications

The observations has done only for mild steel of hardness 60 BHN. It can also be perform on different materials and for different cutting conditions.

Practical implications

The experimental setup developed in this research can be used in the manufacturing industry. It can help to decide and maintain the optimum cutting conditions.

Originality/value

The observations have been made on an experimental setup, which fulfills the actual working/cutting conditions as per the use in industries.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 January 2024

Talwinder Singh

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly…

Abstract

Purpose

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly nanofluid minimum quantity lubrication (NMQL) environment to minimize cutting tool flank wear (Vb) and machined surface roughness (Ra).

Design/methodology/approach

The central composite rotatable design approach under response surface methodology (RSM) is adopted to prepare a design of experiments plan for conducting turning experiments.

Findings

The optimum value of input turning parameters: cutting speed (A), feed rate (B) and depth of cut (C) is found as 79.88 m/min, 0.1 mm/rev and 0.2 mm, respectively, with optimal output response parameters: Vb = 138.633 µm and Ra = 0.462 µm at the desirability level of 0.766. Feed rate: B and cutting speed: A2 are the leading model variables affecting Vb, with a percentage contribution rate of 12.06% and 43.69%, respectively, while cutting speed: A and feed rate: B are the significant factors for Ra, having a percentage contribution of 38.25% and 18.03%, respectively. Results of validation experiments confirm that the error between RSM predicted and experimental observed values for Vb and Ra is 3.28% and 3.75%, respectively, which is less than 5%, thus validating that the formed RSM models have a high degree of conformity with the obtained experimental results.

Practical implications

The outcomes of this research can be used as a reference machining database for various metal cutting industries to establish eco-friendly NMQL practices during the turning of superalloy Inconel 718 to enhance cutting tool performance and machined surface integrity.

Originality/value

No study has been communicated till now on the turning of Inconel 718 under NMQL conditions using olive oil blended with multi-walled carbon nanotubes-based nanofluid.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0317/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 March 2023

Amol Purushottam Vadnere and Shyamkumar D. Kalpande

The purpose of this paper is to analyze the literature that is currently available and take a glance at minimum quantity lubrication (MQL) with nanofluids (NFs) as viable…

Abstract

Purpose

The purpose of this paper is to analyze the literature that is currently available and take a glance at minimum quantity lubrication (MQL) with nanofluids (NFs) as viable candidates to improve the efficiency of various milling operations on challenging materials.

Design/methodology/approach

The extensive literature review is carried through the existing literature, which shows the effect of various process parameters in the milling operation of challenging materials under NF-MQL conditions. The manuscript also deals with identifying the inferences and research gaps from the literature review. The role and potential of NF-MQL in milling challenging materials are identified in this work.

Findings

The conclusion has also derived some recommendations for future study from the prior research, which will be helpful for any further research in this area.

Research limitations/implications

This research work is limited to milling operations in challenging materials.

Practical implications

NF-MQL applications in milling operations are comparatively underexplored and merit considerable research. The amount of effort industry practitioners put into sustainable manufacturing will surely be greatly reduced by thorough research on the milling of challenging materials under NF-MQL settings.

Social implications

MQL system has a great potential to perform well in the experimental endeavor. Despite that fact, majority of the small and medium scale manufacturing industries are still using the conventional flood system for the machining of the workpieces because of the unaffordable initial cost and requirement of expertise involved as compared to the flooded lubrication. This issue might be solved when more works will be accomplished in industries for small as well as medium scale production.

Originality/value

These are novel study approaches because there are so many variables that affect cutting efficiency; therefore, more research is required to assess and provide direction for the advancement of hard milling technology.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0010/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 June 2019

Xingjun Wang, Zhuoran Yang, Feifei Xu and Liping Wang

The microcutting performance of the 10B/Al composite is significantly poor because of the existence of hard boron particles. The effects of cutting parameters, including uncut…

Abstract

Purpose

The microcutting performance of the 10B/Al composite is significantly poor because of the existence of hard boron particles. The effects of cutting parameters, including uncut chip thickness and cutting speed, on the material removal mechanism and surface generation are investigated to improve the surface quality.

Design/methodology/approach

The 2D finite element model, which includes a rigid cutting tool, a reinforced phase, a matrix and a dense layer, is established. The effects of uncut chip thickness on material removal mechanism and surface generation are analyzed from a probabilistic perspective. The relationship between the uncut chip thickness and the probability in which the machined surface will have a better surface quality is constructed. A Gaussian distribution formula is applied to describe the machined surface quality.

Findings

Two representative particle-removal modes, namely, cutting-through and pulling-out modes, are observed. For cutting-through mode, when the relative cutting location is small, better surface quality is obtained. For pulling-out mode, the quality of the machined surface gradually improves because the further increase of the relative cutting location reduces the height of the generated pit and scratches. The microcutting at high cutting speed tends to suppress the scratch phenomenon. The best surface quality will be obtained at small uncut chip thickness and high cutting speed.

Originality/value

The surface quality generated in microcutting of the 10B/Al composite can be improved by optimizing the cutting parameters and controlling the particle-removal modes based on the proposed Gaussian distribution formula.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 April 2014

Seok-Hwan Huh, Kang-Dong Kim and Keun-Soo Kim

The purpose of this paper is to evaluate the relationship between the Cu trace and epoxy resin and to check the validity of surface and interfacial cutting analysis system…

Abstract

Purpose

The purpose of this paper is to evaluate the relationship between the Cu trace and epoxy resin and to check the validity of surface and interfacial cutting analysis system (SAICAS) by comparing its results to those of the 90° peel test.

Design/methodology/approach

In this study, the effects of surface morphology on the adhesion strength were studied for a Cu/epoxy resin system using a SAICAS. In order to evaluate the peel strength of the sample, the curing degree and surface morphology of the epoxy resin were varied in the Cu/epoxy resin system.

Findings

The results indicated that the peel strength is strongly affected by the curing degree and the surface morphology of the epoxy layer. As the pre-cure time increased, the interactions between the epoxy resin and permanganate during the adhesion promotion process decreased, which decreased the surface roughness (Ra) of the resin. Therefore, the surface roughness of the epoxy resin decreased with increasing pre-cure time. The curing degree was calculated with the FTIR absorption peak (910 cm−1) of the epoxy groups. The high curing degree for the epoxy resin results in a coral-like morphology that provides a better anchoring effect for the Cu trace and a higher interfacial strength.

Research limitations/implications

It is necessary to study the further adhesion strength, i.e. the friction energy, the plastic deformation energy, and the interfacial fracture energy, in micro- and nanoscale areas using SAICAS owing to insufficient data regarding the effects of size and electroplating materials.

Originality/value

From findings, it is found that measuring the peel strength using SAICAS is particularly useful because it makes the assessment of the peel strength in the Cu/epoxy resin system of electronic packages possible.

Details

Circuit World, vol. 40 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 12