Search results

1 – 10 of 151
Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 July 2023

Hamdy Mohamed Mohamed and Wael Sabry Mohamed

The study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.

Abstract

Purpose

The study aims to assess the efficiency of nanocomposite to improve the properties of gap-filling materials for pottery artifacts.

Design/methodology/approach

Five different pastes were used in the laboratory studies. The pastes consist mainly of pottery powder (grog), dental plaster, microballoons and an adhesive of Primal AC33, nano-silica and nano kaolinite in various concentrations. The prepared samples were subjected to accelerated heat and light aging. Besides, some investigations were used to evaluate the efficacy of the additive nanomaterials, such as TEM, digital and scanning electron microscopy microscopes. Contact angle, color change, shrinkage degree, physical properties and compressive strength tests were also conducted.

Findings

The results indicated that using Nano-silica considerably improves the mechanical strength and decreases the shrinkage of gap-filling materials. According to the results, a mixture of grog, microballoons and Primal AC33/Nano-silica Nanocomposites is the optimal gap-filling paste for archaeological pottery. Moreover, this paste showed a higher contact angle (120°), lower color change (ΔE = 2.62), lower shrinkage (3.3%), lower water absorption (3.36%), lower porosity (5.05%) and higher compressive strength (5124 N/mm2).

Originality/value

This paper attains to develop an economic polymer-nanocomposite that can be used with gap-filling materials for pottery artifacts.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2023

Saima Habib, Farzana Kishwar, Zulfiqar Ali Raza and Sharjeel Abid

This study aims to present a sustainable approach in the natural dyeing of cellulose fabric followed by nanosilver finishing through a green crosslinker of citric acid for…

Abstract

Purpose

This study aims to present a sustainable approach in the natural dyeing of cellulose fabric followed by nanosilver finishing through a green crosslinker of citric acid for potential antibacterial surgical gown fabrication.

Design/methodology/approach

The nanosilver finish was reproduced using the chemical reduction method. The fabric dyeing was performed on a lab-scale dyeing machine, whereas silver nano-finishing through a pad-dry-cure approach. Citric acid was used as an eco-friendly crosslinker. The specimens were characterized for antibacterial activity, surface chemical, textile, color properties and finish release trend.

Findings

The results demonstrated the successful application of curcumin dye followed by silver nano-finishing. The resultant fabric exhibited appropriate textile, dyeing performance indicators, hydrophobic behavior and sustainable broad-spectrum antibacterial activity.

Practical implications

The prepared nanosilver-finished/curcumin-treated fabric expressed desirable properties for potential applications in the fabrication of surgical gowns.

Originality/value

The authors found no reports on an extensive examination of nanosilver finishing on the color parameters of curcumin-dyed cellulose fabric while retaining its textile and comfort properties for possible surgical gown fabrication.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2023

Rania Abdel Gwad Eloriby and Hamdy Mohamed Mohamed

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a…

Abstract

Purpose

This study aims to assess the efficacy of nano-alumina (nano-Al2O3) in improving the performance of epoxy adhesives used to assemble archaeological glass. The conservators face a significant problem in assembling this type of artifact. Therefore, the assembling process is considered one of the important stages that must be taken care of to preserve these artifacts from damage and loss.

Design/methodology/approach

To evaluate the stability of adhesives, the samples were subjected to artificial aging under varying environmental conditions. Some investigative techniques and mechanical testing were used in this study to evaluate the selected materials. It includes a transmission electron microscope, X-ray diffraction, visual assessment, digital microscope, scanning electron microscopy (SEM), color change and tensile strength test.

Findings

The visual evaluation and the digital microscope results showed that the epoxy/nano-Al2O3 greatly resisted artificial aging. Although slight yellowing was present, it did not significantly affect the general appearance of the samples. On the other hand, the pure epoxy sample showed cracks of different sizes on its surface due to aging, as evidenced by SEM examination. Furthermore, epoxy/nano-Al2O3 has a better tensile strength (11.27 MPa) and slight color change (ΔE = 2.06).

Originality/value

The main objective of the experimental study was to identify appropriate adhesive materials that possess key properties such as non-yellowing and improved tensile strength by conducting various tests and evaluations. Ultimately, the goal was to identify materials that could serve as effective adhesives for assembling the archaeological glass.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 29 December 2023

Sepehr Ghazinoory and Parvaneh Aghaei

This study aims to investigate the importance and effect of asymmetric technological collaborations’ key success factors in developing countries. The number of collaborations…

Abstract

Purpose

This study aims to investigate the importance and effect of asymmetric technological collaborations’ key success factors in developing countries. The number of collaborations between large enterprises and SMEs, known as asymmetric technological collaborations (ATC) is growing considerably. But this asymmetry in itself can increase the number and intensity of collaboration challenges. So far, limited studies have been conducted on the stability of ATCs, and most of them have been in the context of developed countries. Meanwhile, studying the strength and stability of collaboration in the nano industry with growing market value and increasing newcomers is of particular importance.

Design/methodology/approach

Here, with bionic engineering approach, we used chemistry for the first time to identify the main stability factors of ATCs and build our hypotheses and research model. To this end, we introduced the factors affecting the stability of the dative chemical bond as a bionic counterpart of corporate venture capital (CVC), which is a type of ATC, and proposed 4 hypotheses. We used structural equation modeling (SEM) with partial least squares (PLS) method to examine the hypothesized relationships.

Findings

The analysis of survey questionnaire data from 26 asymmetric collaborations in Iran’s nanotechnology industry shows that “learning of the acceptor company” with a negative effect, “network ties” and “development of the collaboration host region” with a positive effect and “diversity in the collaboration portfolio” with an inverted U-shaped effect are the most influential factors in the stability and continuity of CVCs, respectively.

Originality/value

The findings of this research can be the beginning of a broad path leading to exploring and getting inspiration from chemistry to analyze management issues.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 February 2024

Bataa Sayed Mohamed Mazen, Badawi Mohamed Ismail, Rushdya Rabee Ali Hassan, Mahmoud Ali and Wael S. Mohamed

The purpose of this study is to detect the effect of some natural cellulosic polymers in their nano forms with the addition of zinc oxide nanoparticles on restoring the lost…

Abstract

Purpose

The purpose of this study is to detect the effect of some natural cellulosic polymers in their nano forms with the addition of zinc oxide nanoparticles on restoring the lost mechanical strength of degraded papyrus without any harmful effects on the inks.

Design/methodology/approach

In the current study, the USB digital microscopy, scanning electron microscope, measurement of mechanical properties (tensile and elongation), pH measurement, color change and infrared spectroscopy were undertaken for the samples before and after treatment and aging.

Findings

In the current study, the USB digital microscopy, scanning electron microscope, measurement of mechanical properties (tensile and elongation), pH measurement, color change and infrared spectroscopy were undertaken for the samples before and after treatment and aging.

Originality/value

The effect of strengthening materials was studied on cellulose and carbon ink, which makes this study closer to reality as the manuscript is the consistent structure of cellulose and inks, whereas most of the literature stated the impact of consolidation materials on the strengthening the cellulosic supports without attention to their impact on inks.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 January 2024

Liangbin Chen, Lihong Zhao, Keren Ding, Kaibo Xu and Xianzhe Tang

This study aims to optimize the preparation conditions and modify the nanofiltration (NF) membranes to prepare high-performance polysulfone/sulfonated polysulfone composite…

Abstract

Purpose

This study aims to optimize the preparation conditions and modify the nanofiltration (NF) membranes to prepare high-performance polysulfone/sulfonated polysulfone composite nanofiltration (PSF/SPSF-NF) membranes through interfacial polymerization.

Design/methodology/approach

Investigating the impacts of anhydrous piperazine (PIP) concentration, trimesoyl chloride (TMC) concentration and basement membrane type on NF membrane performance, the optimal membrane was prepared. In addition, nano-SiO2 was added to the active separation layer to modify the NF membranes.

Findings

The comprehensive performance of PSF/SPSF-NF membranes was optimized when the concentration of PIP was 0.75 Wt.% and the concentration of TMC was 0.15 Wt.%, at which time the water flux was 66.1 L·m−2·h−1 and the retention rate of Na2SO4 was 98.1%. The comprehensive performance of polysulfone/sulfonated polysulfone-SiO2 nanofiltration (PSF/SPSF-SiO2-NF) membranes was optimized when the blending ratio of nano-SiO2 to PIP was 2:3, with a pure water flux of 81.9 L·m−2·h−1 and a Na2SO4 retention rate of 95.9%. Compared to polysulfone nanofiltration (PSF-NF) membranes and PSF/SPSF-NF membranes, NF membranes with nano-SiO2 increased the flux recovery rate by 22.9% and 8.7%.

Practical implications

PSF/SPSF-SiO2-NF membrane exhibits excellent antifouling properties.

Originality/value

There is currently no literature available on the preparation of NF membranes using polysulfone/sulfonated polysulfone (PSF/SPFS) as a substrate. This provides a method for modifying NF membranes, starting with the modification of the basement membrane and then modifying the active separation layer.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 May 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.

Design/methodology/approach

In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.

Findings

The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 151