Search results

1 – 10 of 160
Article
Publication date: 25 February 2020

Masoud Rahimian, Ehsan Saebnoori and S.A. Hassanzadeh-Tabrizi

The purpose of this paper is to synthesize and characterize nano-ceramic blue pigment Co0.5Zn0.5Al2O4 via polyacrylamide gel method. Generally, the high cost and the environmental…

Abstract

Purpose

The purpose of this paper is to synthesize and characterize nano-ceramic blue pigment Co0.5Zn0.5Al2O4 via polyacrylamide gel method. Generally, the high cost and the environmental toxicity of cobalt aluminate pigments lead them to become less common and cause problems in production process. To significantly reduce this problem, it is required to reduce the cobalt in the pigment and replace the cobalt with some amounts of zinc in the structure.

Design/methodology/approach

In this paper, calcination temperature and its effects on phase specification and color properties of final product were investigated. The powders were studied by using XRD, FESEM, TG/DTA, FTIR, UV-Vis and colorimetric in CIELab space, in which the calcination temperatures were set to 600°C, 800°C and 1,000 °C, and the inert atmosphere was air.

Findings

According to the XRD patterns, single-phase spinel structure with a good crystallinity was formed even in the low temperature. The infrared spectra displayed vibrations at about 500, 560 and 680 cm−1, which were ascribed to the spinel structure. FESEM images showed nanoscale particles with an average size of 32 nm. Regarding the Co2+ spin transitions in tetrahedral sites, the UV-Vis spectra presented three bands at 552, 598 and 628 nm.

Practical implications

The colorimetric data indicated the formation of blue pigments corresponding to negative values of b*. The color of pigments was affected by calcination temperature.

Originality/value

The characterization analysis shows that a blue pigment has been obtained in this research. Different degrees of blue color were obtained at different calcination temperatures.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2014

Vahideh Tajer Kajinebaf, Fereshteh Rezaeian, Masoud Rajabi and Saeid Baghshahi

– Replacing nano-clay for kaolin in ultramarine pigments was investigated. The paper aims to discuss these issues.

Abstract

Purpose

Replacing nano-clay for kaolin in ultramarine pigments was investigated. The paper aims to discuss these issues.

Design/methodology/approach

Ultramarine pigments with both kaolin and nano-clay were synthesized by traditional method. For this purpose, mixing of the raw materials consisted of calcined clay, sulfur, sodium hydroxide and Arabic gum was milled and then calcined at 800°C for 9 h under controlled atmosphere. The characterization was carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy, colorimetery (CIELab method) and dynamic light scattering (DLS) techniques.

Findings

The investigations show that using nano-clay results in richer pigments. XRD results reveal that the ultramarine phase formation is enhanced by using nano-clay. SEM and DLS results also confirm that the ultramarine pigment synthesized by using nano-clay has smaller particles than that prepared by kaolin.

Originality/value

In this research, for the first time, nano-clay was substituted for kaolin to synthesized ultramarine pigment.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 January 2012

Shai Fu, Kai Zhang, Mingjun Zhhang and Li Tian

The purpose of this paper is to provide a novel method for encapsulation of phthalocyanine blue pigment for inkjet printing inks.

Abstract

Purpose

The purpose of this paper is to provide a novel method for encapsulation of phthalocyanine blue pigment for inkjet printing inks.

Design/methodology/approach

Phthalocyanine blue pigment was encapsulated by emulsion polymerisation of styrene and a polymerisable dispersant, allyloxy nonyl‐phenoxy propanol polyoxyethylene ether ammonium sulphonate (ANPS). The encapsulated phthalocyanine blue pigment was further formulated into dispersion. The encapsulated phthalocyanine blue pigment was characterised with transmission electron microscopy (TEM), thermogravimetric analyses (TGA), X‐ray diffraction (XRD), Zeta potential and contact angle measurements. The encapsulated phthalocyanine blue pigment dispersion was evaluated in terms of rheological behaviour, particle size distribution and stability.

Findings

TEM and TGA proved that polymer encapsulation layer was formed onto phthalocyanine blue pigment surface. XRD indicated that the crystal structure of phthalocyanine blue pigment was not changed during the encapsulation process. The wettability of phthalocyanine blue pigment was improved after polymer encapsulation. The dispersion formulated with encapsulated phthalocyanine blue pigment had a narrow particle size distribution, excellent stability to temperature and centrifugal forces. Its rheological behaviour was close to Newtonian fluid.

Practical implications

The methods provided a novel and practical solution for preparing the encapsulated phthalocyanine blue pigment dispersion for formulation of inkjet printing ink.

Originality/value

The paper demonstrates how emulsion polymerisation technique is employed to encapsulate phthalocyanine blue pigment using a polymerisable dispersant, ANPS, which imparts to dispersion a small particle size, narrow particle size distribution and high stability.

Details

Pigment & Resin Technology, vol. 41 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 July 2022

Manisha Bhandari, Rajan Sharma, Savita Sharma, Hanuman Bobade and Baljit Singh

The purpose of this study is to address consumer’s preference of natural pigments over synthetic ones and their use in various product developments rather than using synthetic…

Abstract

Purpose

The purpose of this study is to address consumer’s preference of natural pigments over synthetic ones and their use in various product developments rather than using synthetic colours. A budding interest of using natural pigments has made researchers to explore several techniques for their stabilization and application in different food products.

Design/methodology/approach

In this review, four major natural pigments with potential health benefits have been studied. Betalins, carotenoids, anthocyanins and chlorophylls, in spite of having excellent bio-functional and therapeutic profile, are found to be unstable. Therefore, various nanoencapsulation techniques are used to increase their stability along with their therapeutic properties.

Findings

Nanoencapsulation of natural pigments improves their stability, their effect on therapeutic properties and their application in different food products. These findings could be attributed to the encapsulating material as it acts as a barrier and ushers changes in the matrix of natural pigments. Also, nanoencapsulation not only increases stability but also provides several health benefits such as anti-inflammation, anti-cancer, anti-allergic and anti-thrombotic properties.

Originality/value

This paper highlights the openings for the use of nanoencapsulation of natural pigments to stabilize them and use them as a potential colourant and functional ingredient in different food products. Phenols, carotenoids and antioxidant activity are the major factors that are responsible for promoting several health benefits.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 March 2017

Mohammadreza Johari, Masoud Rajabi and Vahid Mohammadi

The present paper aims to synthesize SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powder using a combination of citrate – gel processing and microwave-assisted heating…

227

Abstract

Purpose

The present paper aims to synthesize SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powder using a combination of citrate – gel processing and microwave-assisted heating route.

Design/methodology/approach

Microwave-assisted citrate – gel processing of SrAl2O4:Eu2+, Dy3+ green-emitting phosphor nano-pigment powder has been carried out by varying the pH and the molar ratio of H3Cit/Al3+ + Sr2+ +Eu2++Dy3+ (f/o). X-ray diffraction analysis showed that the produced powders were nearly pure SrAl2O4 phase, in which the SrAl2O4 host phase has the maximum fraction of green-emitting monoclinic SrAl2O4 phase.

Findings

Spectrophotometer results revealed that two excitation peaks appeared at 238 and 339 nm and an emission peak at 515 nm. The crystallite size of the green-emitting phosphor nano-pigment powder was about 37 nm as determined by Scherrer’s formula. The best conditions for formation of monoclinic SrAl2O4 phase with high purity were achieved at pH of precursor solution equal to 7 and the molar ratio of f/o equal to 3.

Originality/value

The present research work for the first time (to the best of the authors’ knowledge) has used microwave and sol–gel combination techniques to produce green-emitting phosphor nano-pigment powder (without using any other heating system).

Details

Pigment & Resin Technology, vol. 46 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 March 2012

Anna Modrzejewska‐Sikorska, Filip Ciesielczyk and Teofil Jesionowski

The purpose of this paper is to propose a new method of synthesis of CuO · SiO2 oxide composite based on the reaction of precipitation from water solutions of sodium silicate and…

Abstract

Purpose

The purpose of this paper is to propose a new method of synthesis of CuO · SiO2 oxide composite based on the reaction of precipitation from water solutions of sodium silicate and copper nitrate.

Design/methodology/approach

Solutions of sodium silicate and copper nitrate were used as substrates. The effects of direction of substrate supply, concentration, excess of reagents and temperature of precipitation on the physicochemical properties of the products were analysed.

Findings

A new method of synthesis of CuO · SiO2 oxide composite based on a precipitation reaction is proposed.

Research limitations/implications

Only sodium silicate and copper nitrate solutions were used.

Practical implications

The CuO · SiO2 oxide composite obtained can be used as blue pigment or polymer filler.

Originality/value

The paper determines optimum conditions of CuO · SiO2 oxide composite precipitation to obtain products with desired physicochemical, dispersive and structural properties.

Article
Publication date: 12 January 2010

O.A. Hakeim, Qinguo Fan and Yong K. Kim

The purpose of this paper is to encapsulate aqueous dispersions of nano‐scale CI Pigment Red 122 prepared through ball milling into UV‐curable resins, 1,6 hexanediol diacrylate…

1064

Abstract

Purpose

The purpose of this paper is to encapsulate aqueous dispersions of nano‐scale CI Pigment Red 122 prepared through ball milling into UV‐curable resins, 1,6 hexanediol diacrylate (HDDA, monomer), and polyester acrylate (oligomer) using the mini‐emulsion technique.

Design/methodology/approach

The encapsulation of pigment is achieved by mixing a surfactant‐stabilised pigment dispersions and a monomer/oligomer mini‐emulsions and subjecting both to mini‐emulsification conditions. A film of encapsulated pigment mini‐emulsion is finally UV cured using water‐soluble initiator. Efficient encapsulation is proven by ultra‐centrifugal sedimentation, scanning electron microscopy and thermogravimetric analysis (TGA). The stability of pigment dispersions and also the encapsulation process are investigated.

Findings

TGA and ultracentrifuge sedimentation results showed that CI Pigment Red 122 is successfully encapsulated into polyester acrylate/HDDA resins. The oligomer (polyester acrylate) in the presence of organic pigment could stabilise the mini‐emulsion droplets without introducing any other hydrophobes (co‐stabiliser) in the formulation. In addition, the encapsulation percentage and suspension stability of mini‐emulsion are best when the polyester acrylate/HDDA weight ratio is 3:2.

Research limitations/implications

The UV‐curable resins used in the present context are 1,6 HDDA and polyester acrylate. Besides, various oligomer/monomer composition types could be used and its impact on encapsulation efficiency could be also studied.

Practical implications

This method of encapsulation is practically effective for modification of organic pigments for use in UV‐curable ink‐jet printing inks.

Originality/value

The developed method is novel from a literature point of view and can be of a great benefit to achieve the required properties of pigmented UV‐curable system in inkjet printing of textiles. In addition, it could find numerous applications in surface coating.

Details

Pigment & Resin Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 May 2022

Amrita Poonia and Surabhi Pandey

Whey is a by-product of paneer, cheese and casein industry and considered as a dairy waste. Worldwide, approximately 180–1,900 million tons of whey is produced annually. Whey is…

Abstract

Purpose

Whey is a by-product of paneer, cheese and casein industry and considered as a dairy waste. Worldwide, approximately 180–1,900 million tons of whey is produced annually. Whey is classified as a high pollutant due to its organic matter level. Owing to its high chemical oxygen demand and biological oxygen demand, it is a big threat to the environment. Whey contains 4.5%–5.0% lactose, 0.6%–0.7% protein, 0.4%–0.5% lipids, vitamins and minerals. Due to its high nutritional profile, it is a good substrate for the microorganisms for production of natural pigments. The purpose of this paper is to review the utilization of low cost substrate (whey) for production of various types of pigments and their applications in different sectors.

Design/methodology/approach

The databases for the search included: Scopus, PubMed, Science Direct, Web of Science, Research gate and Google. The main search was directed towards different types of natural pigments, stability, technologies for enhancing their production and contribution towards circular economy. Approximately 100 research papers were initially screened. A global search was conducted about natural pigments. Research articles, review papers, books, articles in press and book chapters were the type of search for writing this review paper.

Findings

Production of natural pigments using whey and their addition in food products not only improves the colour of food but also enhances the antioxidant properties of food products, helping the health benefits by chelating free radicals from the body. The sustainable use of whey for production of natural pigments can improve the bio-based economy of different industries and thereof the national economy.

Originality/value

Efficient utilization of whey can bring a lot more opportunities for production of natural pigments in a sustainable manner. The sustainable approach and circular economy concepts will benefit the dependent industries and health conscious consumers. The potential uses of whey for the production of natural pigments using diverse organisms are highlighted in this paper.

Details

Nutrition & Food Science , vol. 53 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 19 October 2018

Christiana Agbo, Collins Acheampong, Liping Zhang, Min Li and Shai Shao Fu

This study aims to evaluate the use of polyoxyethylene lauryl ether (PLE) as a dispersant in the preparation of novel pigment dispersion with enhanced dispersion ability, which…

239

Abstract

Purpose

This study aims to evaluate the use of polyoxyethylene lauryl ether (PLE) as a dispersant in the preparation of novel pigment dispersion with enhanced dispersion ability, which can find application in the printing industry.

Design/methodology/approach

To obtain a good dispersion, PLE was used as a dispersant in pigments dispersion. The colloidal and rheological properties of the PLE-based dispersion, such as particle distribution, zeta potentials and apparent viscosity were evaluated.

Findings

The particle sizes of the pigment dispersions were within the range of 150 to 200 nm. The measurement of zeta potentials varied between −24 to −32 mV, revealing a strong surface charge interaction between pigments and PLE. Subsequently, its stability to high-speed centrifuge and freeze-thaw treatment was carefully investigated. To demonstrate the coverage of pigment particles by PLE, thermogravimetric analysis was carried out. Moreover, X-ray diffraction was used to disclose the combined impacts of PLE and ultrasonic power on the crystal structures of the pigments. Finally, the coloring performance and leveling properties of pigment dispersions on cotton substrates were evaluated by measuring their K/S values (color strength), rub and color fastness properties, which possessed good results.

Research limitations/implications

The dispersant used is incompatible with strong oxidizing agents and strong bases. More so, modification to improve its dispersion properties can be studied.

Practical implications

The use of PLE as a dispersant could be readily used in pigment dispersion processes and other suitable applications. PLE could also be used as a co-surfactant in synergy with other surfactants or dispersants in the dispersion process.

Originality/value

The use of PLE in pigment dispersion as well as investigating its coloring properties on cotton fabric is novel and can find various applications in the dying, printing and coating industry.

Details

Pigment & Resin Technology, vol. 48 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 February 2021

Amruta Joglekar-Athavale and Ganapti S. Shankarling

The review glances upon the colorants used for printing on ceramic substrates by ink jet technology and techniques, chemistry involved during the selection of the colorants.

Abstract

Purpose

The review glances upon the colorants used for printing on ceramic substrates by ink jet technology and techniques, chemistry involved during the selection of the colorants.

Design/methodology/approach

The ink jet technology is an easy and a convenient technique, specially designed colorants are used for such applications with tailor made properties and features.

Findings

New developments in technology and chemistry of colorants to achieve successes in application studies of ceramic substrates.

Research limitations/implications

N/A.

Practical implications

This review glances upon the history, development and practical approach of the current techniques with available dyes and pigments and the techniques involved during the synthesis and application.

Originality/value

The review paper provides information about the development of the inkjet technique on ceramics and available colorants with methods.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 160