Search results

1 – 10 of 76
Article
Publication date: 14 September 2012

K. Bukat, J. Sitek, M. Kościelski, M. Jakubowska, M. Słoma, A. Młożniak and W. Niedźwiedź

The purpose of this paper is to study the manufacturing of SAC 305 solder paste with multiwall carbon nanotubes (MWCNT) before and after structure modification and also to…

Abstract

Purpose

The purpose of this paper is to study the manufacturing of SAC 305 solder paste with multiwall carbon nanotubes (MWCNT) before and after structure modification and also to investigate the added carbon nanotubes' influence on the technological properties and the microstructure of “nanosolder pastes. This work is a continuation of similar previous studies of SAC solder pastes with silver nanopowder additions.

Design/methodology/approach

The authors applied functionalization and esterification methods for the structural modification of the carbon nanotubes. The “nanosolder paste preparation was performed with the use of a two‐stage method of carbon nanotube dispersion in “own‐manufactured” SAC 305 solder paste. To determine the technological properties of the “nanosolder paste, slump, solder ball, wetting and spreading tests were applied according to the existing standards. Standard metallographic procedures were applied for microstructural analysis.

Findings

As expected on the basis of the previous studies of SAC solder pastes with silver nanopowders, positive results were obtained for the own‐manufactured SAC 305 solder paste with carbon nanotubes by applying the dispersion method. Also applied were functionalization and esterification methods, whose results showed microstructural changes in the carbon nanotubes. The “nanoSAC solder pastes showed a positive influence on the slump properties, compared to the basic SAC solder paste. The authors proved a negative influence of the carbon nanotubes' addition (dependent on their concentration) on the spreading and wetting of the SAC solder paste on a copper substrate, which provoked the non‐wetting and dewetting phenomena. A slight improvement was observed for the “nanoSAC solder pastes with modified carbon nanotubes. The carbon nanotubes' presence in the solder paste showed a positive effect on the growth reduction of the IMCs' thickness, which depended on the type.

Research limitations/implications

The authors intend to verify the reinforcement effect of the alloys with carbon nanotubes suggested in the literature (the aim of Part II). For this purpose, an assembly process with RC electronic elements on PCBs with Ni/Au and SAC (HASL) finishes will be performed, with the use of the SAC 305 solder paste with modified carbon nanotubes, for the purpose of reflow soldering. Next, measurements of the mechanical strength of the solder joints and their microstructures will be conducted.

Practical implications

It is suggested that further studies of the mechanical properties and the reliability of solder joints are necessary for the practical implementation of the “nanoSAC solder pastes, but taking into account the wetting data, the investigation should be performed only for “nanopastes with the lowest additions of modified carbon nanotubes.

Originality/value

The paper demonstrates a method of “nanosolder paste preparation by means of a two‐stage dispersion of carbon nanotubes in the own‐manufactured SAC 305 solder paste and a comparison study of the properties of “nanopastes with the basic SAC solder paste.

Details

Soldering & Surface Mount Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 June 2011

K. Bukat, M. Kościelski, J. Sitek, M. Jakubowska and A. Młożniak

The purpose of this paper is to investigate the influence of silver nanoparticle additions on the wetting properties of Sn‐Ag‐Cu (SAC) solder paste. In this investigation, the…

1106

Abstract

Purpose

The purpose of this paper is to investigate the influence of silver nanoparticle additions on the wetting properties of Sn‐Ag‐Cu (SAC) solder paste. In this investigation, the basic solder paste contained 85 wt.% of commercial Sn 96.5 Ag 3 Cu 0.5 powder (with the particle sizes in the range of 20‐38 μm) and 15 wt.% of self‐prepared middle activated rosin flux. To this paste was added 0.5, 1, 2 and 4 wt.% of self‐prepared silver nano‐powders of different grain sizes (from 9 to 138 nm). After the pastes had stabilized, their wetting properties were tested. The main goal of these investigations was to improve the wetting properties of SAC solder paste and to find correlations between the results of the wetting of solder paste with nanoparticles on the copper substrate with the microstructure of the solder joints.

Design/methodology/approach

The following methods were applied for the wetting solder paste investigation: spreading on the copper substrate, contact angle measurement on the copper and wetting on a FR‐4 laminate double sided with an 18‐μm thick copper foil. The investigations were performed at temperatures of 220, 230, 240 and 250°C. Cross‐sectioning was performed on the solder paste after reflow on the copper substrate. For the microstructural analysis of the “nano” modified solder joints obtained at 250°C, standard metallographic procedures were applied. Changes in the microstructure, the thickness of the inter‐metallic compounds (IMCs) and their chemical compositions were observed by means of scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS).

Findings

As expected, a higher silver nanoparticle addition to the SAC solder paste resulted in better wetting properties on copper. The results indicated the possibility of an improvement of the reflow soldering process by using SAC solder paste with silver nanoparticles and by lowering its soldering temperature. An improvement was also observed in the wettability with a decrease in the silver nanoparticle grain size. Also, the wettability proceeded at a lower temperature (20°C lower) than that for the SAC paste, without the nano‐additives. For the 4 per cent silver nanoparticle addition, Ag3Sn star‐like IMCs were also found, which grew with the lowering of the silver nanoparticle grain size.

Research limitations/implications

Further studies are necessary for confirmation of the practical application, especially of the mechanical properties, as well as the reliability properties of the solder joints, for the chosen solder paste with silver nanoparticles.

Practical implications

Taking into account the wetting data, the best results of the “nanoSAC solder pastes were obtained for the highest addition of the silver nanoparticles. It was found that the spreading on copper was higher and the contact angles were lower for the SAC solder paste with 4 per cent (by wt.) of 138‐nm grain size silver nanoparticles. A comparison of SAC solder pastes with a 4 per cent silver nanoparticle addition but of a different grain size (138‐9 nm), suggested a further improvement in wetting properties with lowering of the silver nanoparticle grain size. The results suggested the possibility of an improvement in the reflow soldering process by using SAC solder paste with silver nanoparticles and by lowering its soldering temperature.

Originality/value

Spreading, wetting and contact angle measurement methods were used for the wetting determination of the SAC solder paste with the silver nanoparticles on copper under the same temperature conditions. Also, the microstructure of the solder joints obtained at 250°C was determined with the use of SEM and EDS methods. The results obtained made it possible to draw conclusions regarding the correlation between the output of the wetting results and the amount and the grain size of the added silver nanoparticles, and also the microstructure and thickness of the IMCs of the “nanosolder joints.

Details

Soldering & Surface Mount Technology, vol. 23 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 September 2013

Krystyna Bukat, Janusz Sitek, Marek Koscielski, Wojciech Niedzwiedz, Anna Mlozniak and Malgorzata Jakubowska

The purpose of this work is to investigate the influence of carbon nanotube additions to solder paste on the solder joints mechanical strength and their microstructure. In our…

Abstract

Purpose

The purpose of this work is to investigate the influence of carbon nanotube additions to solder paste on the solder joints mechanical strength and their microstructure. In our investigation, the basic solder paste contains 85 wt.% of the commercial Sn96.5Ag3Cu0.5 powder (with the particle sizes in the range of 20‐38 μm) and 15 wt.% of the self‐prepared middle activated rosin flux. To this paste we added the 0.01, 0.05 and 0.1 wt.% of the self‐modified CNT by functionalized them by mineral acid and than esterificated by methanol (FCNTMet) or polyethylene glycol 400 (FCNTPG). After the pastes had stabilized, the reflow soldering process of “zero ohm” chip resistors on PCBs with Ni/Au and SAC (HASL) finishes was carried out and then shear strength of the solder joints was measured. The correlations between the mechanical strength of solder joins without and with the carbon nanotubes and their microstructure were analysed.

Design/methodology/approach

For shear strength measurement of solder joints, the printed circuit boards with Ni/Au and SAC (HASL) finishes was applied. The SAC solder paste with different carbon nanotubes and the basic SAC solder paste as reference were used for this experiment. The automatic SMT line was applied for the paste screen printing; “zero ohms” chip resistors: 0201, 0402, 0603 and 0805 were placing on PWBs and then reflowing according to appropriate time – temperature profile. The shear strength of the solder joints was measured. For the solder joints microstructure analysis, the standard metallographic procedures were applied. Changes in the microstructure, the thickness of the intermetallic compounds and their chemical compositions were observed by means of the SEM equipped with EDS.

Findings

As the authors expected, the SAC solder paste with the carbon nanotubes addition improve the solder joints shear strength of the chip resistors mounted on PCBs with Ni/Au and SAC (HASL) finishes. The carbon nanotubes addition positive effects on IMCs thickness because of blocking their excessive growth.

Research limitations/implications

It is suggested that further studies are necessary for the confirmation of the practical application, especially of the reliability properties of the solder joints obtained using solder paste with chosen carbon nanotubes.

Practical implications

Taking into account the shear strength data, the best results of the “nanoSAC solder pastes were obtained for the lowest addition of the carbon nanotubes modified by esterification process, especially by the methanol compared to the polyethylene glycol 400.

Originality/value

The obtained results made it possible to draw conclusions regarding the correlation between the output of the mechanical results and the amount of the added carbon nanotubes, and also the microstructure and thickness of the IMCs of the “nanosolder joints. It can be useful from practical point of view.

Article
Publication date: 18 December 2018

Fakhrozi Che Ani, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Mohamad Aizat Abas, Zuraihana Bachok and Norinsan Kamil Othman

This study aims to investigate the NiO nano-reinforced solder joint characteristics of ultra-fine electronic package.

Abstract

Purpose

This study aims to investigate the NiO nano-reinforced solder joint characteristics of ultra-fine electronic package.

Design/methodology/approach

Lead-free Sn-Ag-Cu (SAC) solder paste was mixed with various percentages of NiO nanoparticles to prepare the new form of nano-reinforced solder paste. The solder paste was applied to assemble the ultra-fine capacitor using the reflow soldering process. A focussed ion beam, high resolution transmission electron microscopy system equipped with energy dispersive X-ray spectroscopy (EDS) was used in this study. In addition, X-ray inspection system, field emission scanning electron microscopy coupled with EDS, X-ray photoelectron spectroscopy (XPS) and nanoindenter were used to analyse the solder void, microstructure, hardness and fillet height of the solder joint.

Findings

The experimental results revealed that the highest fillet height was obtained with the content of 0.01 Wt.% of nano-reinforced NiO, which fulfilled the reliability requirements of the international IPC standard. However, the presence of the NiO in the lead-free solder paste only slightly influenced the changes of the intermetallic layer with the increment of weighted percentage. Moreover, the simulation method was applied to observe the distribution of NiO nanoparticles in the solder joint.

Originality/value

The findings are expected to provide a profound understanding of nano-reinforced solder joint’s characteristics of the ultra-fine package.

Details

Soldering & Surface Mount Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 January 2018

Fakhrozi Che Ani, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Roslina Ismail, Zuraihana Bachok, Mohamad Aizat Abas and Norinsan Kamil Othman

This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly.

Abstract

Purpose

This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly.

Design/methodology/approach

This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine.

Findings

The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards.

Practical implications

This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry.

Originality/value

The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.

Details

Soldering & Surface Mount Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 April 2017

Gaofang Ban, Fenglian Sun, Yang Liu and Shaonan Cong

The purpose of this paper is to focus on the fabrication of SnAgCu (SAC) nanocomposites solder and study the effect of Cu nanopowders (nano-Cu) addition on the microstructure…

Abstract

Purpose

The purpose of this paper is to focus on the fabrication of SnAgCu (SAC) nanocomposites solder and study the effect of Cu nanopowders (nano-Cu) addition on the microstructure evolution of resultant nanocomposite solder after reflow and thermal aging.

Design/methodology/approach

Mechanical mixing is used in this work to incorporate nanoparticles into the solder and produce more homogeneous mixture. Standard metallographic procedures are applied for microstructural analysis of solder joints.

Findings

It is found that nano-Cu doped into Sn0.7Ag0.5Cu-BiNi solder has no appreciable influence on melting temperature of the composite solder. The addition of Cu nanoparticles refines the microstructure of bulk solder and suppresses the growth of interfacial intermetallic compound (IMC) layers. However, interfacial IMC grain size increases slightly after 1.0 per cent nano-Cu added.

Originality/value

The paper demonstrates a method of nano-composite solder paste preparation by means of mechanical mixing and a comparison study of the microstructure evolution of composite solder with the basic SAC solder.

Details

Soldering & Surface Mount Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 June 2016

Guang Chen, Li Liu, Vadim V. Silberschmidt, Y.C. Chan, Changqing Liu and Fengshun Wu

This paper aims to systematically study the effect of reinforcement type, processing methods and reflow cycle on actual retained ratio of foreign reinforcement added in solder

Abstract

Purpose

This paper aims to systematically study the effect of reinforcement type, processing methods and reflow cycle on actual retained ratio of foreign reinforcement added in solder joints.

Design/methodology/approach

Two kinds of composite solders based on SAC305 (wt.%) alloys with reinforcements of 1 wt.% Ni and 1 wt.% TiC nano-particles were produced using powder metallurgy and mechanical blending method. The morphology of prepared composite solder powder and solder pastes was examined; retained ratios of reinforcement (RRoR) added in solder joints after different reflow cycles were analysed quantitatively using an Inductively Coupled Plasma optical system (ICP-OES Varian-720). The existence forms of reinforcement added in solder alloys during different processing stages were studied using scanning electron microscope, X-ray diffractometry and energy dispersive spectrometry.

Findings

The obtained experimental results indicated that the RRoR in composite solder joints decreased with the increase in the number of reflow cycles, but a loss ratio diminished gradually. It was also found that the RRoR which could react with the solder alloy were higher than that of the one that are unable to react with the solder. In addition, compared with mechanical blending, the RRoRs in the composite solders prepared using power metallurgy were relatively pronounced.

Originality/value

Present study offer a preliminary understanding on actual content and existence form of reinforcement added in a reflowed solder joint, which would also provide practical implications for choosing reinforcement and adjusting processing parameters in the manufacture of composite solders.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 February 2011

S.L. Tay, A.S.M.A. Haseeb and Mohd Rafie Johan

The purpose of this paper is to investigate the effects of addition Co nanoparticles on the characteristic properties of Sn‐3.8Ag‐0.7Cu solder.

Abstract

Purpose

The purpose of this paper is to investigate the effects of addition Co nanoparticles on the characteristic properties of Sn‐3.8Ag‐0.7Cu solder.

Design/methodology/approach

Cobalt (Co) nanoparticles were added to Sn‐Ag‐Cu solders by thoroughly blending various weight percentages (0‐2.0 wt%) of Co nanoparticles with near eutectic SAC387 solder paste. Blending was done mechanically for 30 min to ensure a homogeneous mixture. The paste mixture was then reflowed on a hot plate at 250°C for 45 s. The melting points of nanocomposite solder were determined by differential scanning calorimetry. Spreading rate of nanocomposite was calculated following the JIS Z3198‐3 standard. The wetting angle was measured after cross‐sectional metallographic preparation.

Findings

No significant change in melting point of the solder was observed as a result of Co nanoparticle addition. The wetting angles of the solder increased with the addition of nanoparticles, while the spreading rate decreased. Although the wetting angle increased, the values were still within the acceptable range. Scanning micrograph observations revealed that the as‐solidified microstructure of the composite solder was altered by the addition of Co nanoparticles. Microhardness of the solders slightly increased upon Co nanoparticles addition to SAC387.

Originality/value

The paper demonstrates that a simple process like paste mixing can be used to incorporate nanoparticles into solder.

Details

Soldering & Surface Mount Technology, vol. 23 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 17 October 2019

Muhammad Aamir, Riaz Muhammad, Majid Tolouei-Rad, Khaled Giasin and Vadim V. Silberschmidt

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the…

Abstract

Purpose

The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the introduction and development of different grades of lead-free solder alloys in the global market. Tin-silver-copper is a lead-free alloy which has been acknowledged by different consortia as a good alternative to conventional tin-lead alloy. The purpose of this paper is to provide comprehensive knowledge about the tin-silver-copper series.

Design/methodology/approach

The approach of this study reviews the microstructure and some other properties of tin-silver-copper series after the addition of indium, titanium, iron, zinc, zirconium, bismuth, nickel, antimony, gallium, aluminium, cerium, lanthanum, yttrium, erbium, praseodymium, neodymium, ytterbium, nanoparticles of nickel, cobalt, silicon carbide, aluminium oxide, zinc oxide, titanium dioxide, cerium oxide, zirconium oxide and titanium diboride, as well as carbon nanotubes, nickel-coated carbon nanotubes, single-walled carbon nanotubes and graphene-nano-sheets.

Findings

The current paper presents a comprehensive review of the tin-silver-copper solder series with possible solutions for improving their microstructure, melting point, mechanical properties and wettability through the addition of different elements/nanoparticles and other materials.

Originality/value

This paper summarises the useful findings of the tin-silver-copper series comprehensively. This information will assist in future work for the design and development of novel lead-free solder alloys.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 13 October 2022

Marcin Myśliwiec, Ryszard Kisiel and Mirosław J. Kruszewski

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties…

Abstract

Purpose

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties (>5 MPa shear strength) and low thermal interface resistance (better than for SAC solders) are the goal of this research.

Design/methodology/approach

Mechanical and thermal properties of TIM joints between gold plated contacts of chip and substrate were investigated. Sintering technique based on Ag pastes was applied for purpose of this study. Performance properties were assessed by shear force tests and thermal measurements. Scanning electron microscopy was used for microstructural observations of cross-section of formed joints.

Findings

It was concluded that the best properties are achieved for pastes containing spherical Ag particles of dozens of micrometer size with flake shaped Ag particles of few micrometers size. Sintering temperature at 230°C and application of 1 MPa force on the chip during sintering gave the higher adhesion and the lowest thermal interface resistance.

Originality/value

The new material based on Ag paste containing mixtures of Ag particles of different size (form nanometer to dozens of microns) and shape (spherical, flake) suspended in resin was proposed. Joints prepared using sintering technique and Ag pastes at 230°C with applied pressure shows better mechanical and thermal than other TIM materials such as thermal grease, thermal gel or thermally conductive adhesive. Those material could enable electronic device operation at temperatures above 200°C, currently unavailable for Si-based power electronics.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of 76