Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 7 April 2021

Ganesh Rupchand Gawale and Naga Srinivasulu G.

Homogeneous charge compression ignition (HCCI) engine is an advanced combustion method to use alternate fuel with higher fuel economy and, reduce NOX and soot emissions…

Abstract

Purpose

Homogeneous charge compression ignition (HCCI) engine is an advanced combustion method to use alternate fuel with higher fuel economy and, reduce NOX and soot emissions. This paper aims to investigate the influence of ethanol fraction (ethanol plus gasoline) on dual fuel HCCI engine performance.

Design/methodology/approach

In this study, the existing CI engine is modified into dual fuel HCCI engine by attaching the carburetor to the inlet manifold for the supply of ethanol blend (E40/E60/E80/E100). The mixture of ethanol blend and the air is ignited by diesel through a fuel injector into the combustion chamber at the end of the compression stroke. The experiments are conducted for high load conditions on the engine i.e. 2.8 kW and 3.5 kW maximum output power for 1,500 constant rpm.

Findings

It is noticed from the experimental results that, with an increase of ethanol in the blends, ignition delay (ID) increases and the start of combustion is retarded. It is noticed that E100 shows the highest ID and low in-cylinder pressure; however, E40 shows the lowest ID compared to higher fractions of ethanol blends. An increase in ethanol proportion reduces NOX and smoke opacity but, HC and CO emissions increase compared to pure diesel mode engine. E100 plus diesel dual-fuel HCCI engine shows the highest brake thermal efficiency compared to remaining ethanol blends and baseline diesel engine.

Originality/value

This experimental study concluded that E100 plus diesel and E80 plus diesel gave optimum dual fuel HCCI engine performance for 2.8 kW and 3.5 kW rated power, respectively.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 23 December 2015

Venkateswarlu Velisala, G. Naga Srinivasulu, B. Srinivasa Reddy and K. Venkata Koteswara Rao

Fuel cells technologies are the most promising green energy technologies for diverse applications. One of the fastest growing areas is the portable electronic applications…

Abstract

Fuel cells technologies are the most promising green energy technologies for diverse applications. One of the fastest growing areas is the portable electronic applications where the power range is the order of 1–100 W. For most of the portable electronic devices, rechargeable battery is the major energy source. Due to limitations like limited capacity, requirement of external power for recharge have led many researchers to look for alternative power sources to power portable electronic devices. The high energy density of fuel cells makes them very attractive alternative to batteries for portable power applications. There are a variety of fuel cell technologies being considered to replace batteries in portable electronic equipment. Direct Liquid Fuel Cells (DLFCs) have attracted much attention due to their potential applications as a power source for portable electronic devices. The advantages of DLFCs over hydrogen fed PEM fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. Unlike batteries, fuel cells need not be recharged, merely refueled. This paper provides an overview on challenges of DLFCs (Direct Liquid Fuel Cells), like fuel crossover, cost, durability, water management, weight and size along with approaches being investigated to solve these challenges. Portable Fuel Cell Commercialization Targets for future and producers of portable fuel cells across the globe are also discussed in this paper.

Details

World Journal of Engineering, vol. 12 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2