Search results

1 – 10 of 37
Article
Publication date: 29 November 2020

Yiying Li and Shiyou Yang

The purpose of this paper is to develop a pertinent design optimization methodology for symmetric designs of a metamaterial (MM) unit.

Abstract

Purpose

The purpose of this paper is to develop a pertinent design optimization methodology for symmetric designs of a metamaterial (MM) unit.

Design/methodology/approach

A cell division mechanism is introduced and used to design a new selecting mechanism in the proposed algorithm, a non-dominated sorting cellular genetic algorithm (NSCGA).

Findings

The numerical results on solving standard multi-objective test functions and a prototype MM unit positively demonstrate the advantages of the proposed NSCGA.

Originality/value

A new NSGAII-based optimization algorithm, NSCGA, for multi-objective optimization designs of a MM unit is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 January 2022

Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté

In the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The…

Abstract

Purpose

In the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The goal of addressing the issue is to reduce delivery times and system costs for retailers so that routing and distributor location may be determined.

Design/methodology/approach

By adding certain unique criteria and limits, the issue becomes more realistic. Customers expect simultaneous deliveries and pickups, and retail service start times have soft and hard time windows. Transportation expenses, noncompliance with the soft time window, distributor construction, vehicle purchase or leasing, and manufacturing costs are all part of the system costs. The problem's conceptual model is developed and modeled first, and then General Algebraic Modeling System software (GAMS) and Multiple Objective Particle Swarm Optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGAII) algorithms are used to solve it in small dimensions.

Findings

According to the mathematical model's solution, the average error of the two suggested methods, in contrast to the exact answer, is less than 0.7%. In addition, the performance of algorithms in terms of deviation from the GAMS exact solution is pretty satisfactory, with a divergence of 0.4% for the biggest problem (N = 100). As a result, NSGAII is shown to be superior to MOSPSO.

Research limitations/implications

Since this paper deals with two bi-objective models, the priorities of decision-makers in selecting the best solution were not taken into account, and each of the objective functions was given an equal weight based on the weighting procedures. The model has not been compared or studied in both robust and deterministic modes. This is because, with the exception of the variable that indicates traffic mode uncertainty, all variables are deterministic, and the uncertainty character of demand in each level of the supply chain is ignored.

Practical implications

The suggested model's conclusions are useful for any group of decision-makers concerned with optimizing production patterns at any level. The employment of a diverse fleet of delivery vehicles, as well as the use of stochastic optimization techniques to define the time windows, demonstrates how successful distribution networks are in lowering operational costs.

Originality/value

According to a multi-objective model in a three-echelon supply chain, this research fills in the gaps in the link between routing and location choices in a realistic manner, taking into account the actual restrictions of a distribution network. The model may reduce the uncertainty in vehicle performance while choosing a refueling strategy or dealing with diverse traffic scenarios, bringing it closer to certainty. In addition, two modified MOPSO and NSGA-II algorithms are presented for solving the model, with the results compared to the exact GAMS approach for medium- and small-sized problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 17 November 2021

Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté

This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this…

1147

Abstract

Purpose

This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this paper is to minimize system costs and delivery time to retailers so that routing is done and the location of the distributors is located.

Design/methodology/approach

The problem gets closer to reality by adding some special conditions and constraints. Retail service start times have hard and soft time windows, and each customer has a demand for simultaneous delivery and pickups. System costs include the cost of transportation, non-compliance with the soft time window, construction of a distributor, purchase or rental of a vehicle and production costs. The conceptual model of the problem is first defined and modeled and then solved in small dimensions by general algebraic modeling system (GAMS) software and non-dominated sorting genetic algorithm II (NSGAII) and multiple objective particle swarm optimization (MOPSO) algorithms.

Findings

According to the solution of the mathematical model, the average error of the two proposed algorithms in comparison with the exact solution is less than 0.7%. Also, the algorithms’ performance in terms of deviation from the GAMS exact solution, is quite acceptable and for the largest problem (N = 100) is 0.4%. Accordingly, it is concluded that NSGAII is superior to MOSPSO.

Research limitations/implications

In this study, since the model is bi-objective, the priorities of decision makers in choosing the optimal solution have not been considered and each of the objective functions has been given equal importance according to the weighting methods. Also, the model has not been compared and analyzed in deterministic and robust modes. This is because all variables, except the one that represents the uncertainty of traffic modes, are deterministic and the random nature of the demand in each graph is not considered.

Practical implications

The results of the proposed model are valuable for any group of decision makers who care optimizing the production pattern at any level. The use of a heterogeneous fleet of delivery vehicles and application of stochastic optimization methods in defining the time windows, show how effective the distribution networks are in reducing operating costs.

Originality/value

This study fills the gaps in the relationship between location and routing decisions in a practical way, considering the real constraints of a distribution network, based on a multi-objective model in a three-echelon supply chain. The model is able to optimize the uncertainty in the performance of vehicles to select the refueling strategy or different traffic situations and bring it closer to the state of certainty. Moreover, two modified algorithms of NSGA-II and multiple objective particle swarm optimization (MOPSO) are provided to solve the model while the results are compared with the exact general algebraic modeling system (GAMS) method for the small- and medium-sized problems.

Details

Smart and Resilient Transportation, vol. 3 no. 3
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 2 October 2017

Tawfik Guesmi and Badr M. Alshammari

Low-frequency oscillations of 0.1 to 3 Hz are prejudicial to the power system stability. Within this context, this study aims to present an improved artificial bee colony…

Abstract

Purpose

Low-frequency oscillations of 0.1 to 3 Hz are prejudicial to the power system stability. Within this context, this study aims to present an improved artificial bee colony (ABC)-based algorithm for optimal setting of multimachine power system stabilizers (PSSs) under several loading conditions simultaneously.

Design/methodology/approach

The proposed approach symbolized by GCABC incorporates the grenade explosion technique and the Cauchy operator in the employed bee and onlooker bee phases to avoid random search. The parameters of the grenade explosion method and Cauchy operator based ABC(GCABC)-based PSSs (GCABC-PSSs) are tuned to place all undamped and lightly damped electromechanical modes in a prespecified zone in the s-plan.

Findings

Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and the dominance of the proposed controllers GCABC-PSSs in the improvement of the system stability under several disturbances and large set of operating points compared with the classical ABC method and genetic algorithm-based PSSs.

Originality/value

The novelty of the study is to efficiently implement a new optimization method called GCABC for an optimum design of PSSs. The design problem is formulated as a multi-objective optimization problem. In addition, all PSS parameters have been included in the space research.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 November 2021

Mohammad Mahdi Ershadi and Mohamad Sajad Ershadi

Appropriate logistic planning for the pharmaceutical supply chain can significantly improve many financial and performance aspects. To this aim, a multi-objective optimization…

Abstract

Purpose

Appropriate logistic planning for the pharmaceutical supply chain can significantly improve many financial and performance aspects. To this aim, a multi-objective optimization model is proposed in this paper that considers different types of pharmaceuticals, different vehicles with determining capacities and multi-period logistic planning. This model can be updated based on new information about resources and newly identified requests.

Design/methodology/approach

The main objective function of the proposed model in this paper is minimizing the unsatisfied prioritized requests for pharmaceuticals in the network. Besides, the total transportation activities of different types of vehicles and related costs are considered as other objectives. Therefore, these objectives are optimized hierarchically in the proposed model using the Lexicographic method. This method finds the best value for the first objective function. Then, it tries to optimize the second objective function while maintaining the optimality of the first objective function. The third objective function is optimized based on the optimality of other objective functions, as well. A non-dominated sorting genetic algorithm II-multi-objective particle swarm optimization heuristic method is designed for this aim.

Findings

The performances of the proposed model were analyzed in different cases and its results for different problems were shown within the framework of a case study. Besides, the sensitivity analysis of results shows the logical behavior of the proposed model against various factors.

Practical implications

The proposed methodology can be applied to find the best logistic plan in real situations.

Originality/value

In this paper, the authors have tried to use a multi-objective optimization model to guide and correct the pharmaceutical supply chain to deal with the related requests. This is important because it can help managers to improve their plans.

Details

International Journal of Pharmaceutical and Healthcare Marketing, vol. 16 no. 1
Type: Research Article
ISSN: 1750-6123

Keywords

Article
Publication date: 8 May 2017

Mahdi Rezaei, Mohsen Akbarpour Shirazi and Behrooz Karimi

The purpose of this paper is to develop an Internet of Things (IoT)-based framework for supply chain (SC) performance measurement and real-time decision alignment. The aims of the…

2244

Abstract

Purpose

The purpose of this paper is to develop an Internet of Things (IoT)-based framework for supply chain (SC) performance measurement and real-time decision alignment. The aims of the proposed model are to optimize the performance indicator based on integrated supply chain operations reference metrics.

Design/methodology/approach

The SC multi-dimensional structure is modeled by multi-objective optimization methods. The operational presented model considers important SC features thoroughly such as multi-echelons, several suppliers, several manufacturers and several products during multiple periods. A multi-objective mathematical programming model is then developed to yield the operational decisions with Pareto efficient performance values and solved using a well-known meta-heuristic algorithm, i.e., non-dominated sorting genetic algorithm II. Afterward, Technique for Order of Preference by Similarity to Ideal Solution method is used to determine the best operational solution based on the strategic decision maker’s idea.

Findings

This paper proposes a dynamic integrated solution for three main problems: strategic decisions in high level, operational decisions in low level and alignment of these two decision levels.

Originality/value

The authors propose a human intelligence-based process for high level decision and machine intelligence-based decision support systems for low level decision using a novel approach. High level and low level decisions are aligned by a machine intelligence model as well. The presented framework is based on change detection, event driven planning and real-time decision alignment.

Details

Industrial Management & Data Systems, vol. 117 no. 4
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 5 March 2018

Benoit Delinchant, Guillaume Mandil and Frédéric Wurtz

Life cycle analysis (LCA) is more and more used in the context of electromagnetic product design. But it is often used to check a design solution regarding environmental impacts…

Abstract

Purpose

Life cycle analysis (LCA) is more and more used in the context of electromagnetic product design. But it is often used to check a design solution regarding environmental impacts after technical and economical choices. This paper aims to investigate life cycle impact optimization (LCIO) and compare it with the classical life cycle cost optimization (LCCO).

Design/methodology/approach

First, a model of a dry-type transformer using different materials for windings and the magnetic core is presented. LCCO, which is a mixed continuous-discrete, multi-objective technico-economic optimization, is done using both deterministic and genetic algorithms. LCCO results and optimization performances are analyzed, and an LCA is presented for a set of optimal solutions. The final part is dedicated to LCIO, where the paper shows that these optimal solutions are close to those obtained with LCCO.

Findings

This paper investigated LCIO using an environmental impacts model that has been introduced in the optimization framework Component Architecture for the Design of Engineering Systems. The paper shows how a mixed continuous-discrete, multi-objective technico-economic optimization can be done using an efficient deterministic optimization algorithm such as Sequential Quadratic Programming. Thanks to the technico-economic-environmental model and the efficient optimization algorithm, both LCCO and LCIO were performed separately and together. It has been shown that optimal solutions are similar, leading to the conclusion that only one modeling is required (economic or environmental) but on the life cycle.

Originality/value

The classical sequential methodology of design is improved here by the use of a model of calculation of the environmental impacts allowing the optimization. This original optimization allowed the authors to show that an analysis of the life cycle from an economic point of view or from an environmental point of view led to quasi-equivalent technical solutions. The key is to take into account the life cycle of the product.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 September 2019

Behzad Karimi, Mahsa Ghare Hassanlu and Amir Hossein Niknamfar

The motivation behind this research refers to the significant role of integration of production-distribution plans in effective performance of supply chain networks under fierce…

Abstract

Purpose

The motivation behind this research refers to the significant role of integration of production-distribution plans in effective performance of supply chain networks under fierce competition of today’s global marketplace. In this regard, this paper aims to deal with an integrated production-distribution planning problem in deterministic, multi-product and multi-echelon supply chain network. The bi-objective mixed-integer linear programming model is constructed to minimize not only the total transportation costs but also the total delivery time of supply chain, subject to satisfying retailer demands and capacity constraints where quantity discount on transportation costs, fixed cost associated with transportation vehicles usage and routing decisions have been included in the model.

Design/methodology/approach

As the proposed mathematical model is NP-hard and that finding an optimum solution in polynomial time is not reasonable, two multi-objective meta-heuristic algorithms, namely, non-dominated sorting genetic algorithm II (NSGAII) and multi-objective imperialist competitive algorithm (MOICA) are designed to obtain near optimal solutions for real-sized problems in reasonable computational times. The Taguchi method is then used to adjust the parameters of the developed algorithms. Finally, the applicability of the proposed model and the performance of the solution methodologies in comparison with each other are demonstrated for a set of randomly generated problem instances.

Findings

The practicality and applicability of the proposed model and the efficiency and efficacy of the developed solution methodologies were illustrated through a set of randomly generated real-sized problem instances. Result. In terms of two measures, the objective function value and the computational time were required to get solutions.

Originality/value

The main contribution of the present work was addressing an integrated production-distribution planning problem in a broader view, by proposing a closer to reality mathematical formulation which considers some real-world constraints simultaneously and accompanied by efficient multi-objective meta-heuristic algorithms to provide effective solutions for practical problem sizes.

Article
Publication date: 16 May 2019

Abhilasha Panwar, Kamalendra Kumar Tripathi and Kumar Neeraj Jha

The purpose of this paper is to develop a qualitative framework for the selection of the most appropriate optimization algorithm for the multi-objective trade-off problem (MOTP…

Abstract

Purpose

The purpose of this paper is to develop a qualitative framework for the selection of the most appropriate optimization algorithm for the multi-objective trade-off problem (MOTP) in construction projects based on the predefined performance parameters.

Design/methodology/approach

A total of 6 optimization algorithms and 13 performance parameters were identified through literature review. The experts were asked to indicate their preferences between each pair of optimization algorithms and performance parameters. A multi-criteria decision-making tool, namely, consistent fuzzy preference relation was applied to analyze the responses of the experts. The results from the analysis were applied to evaluate their relative weights which were used to provide a ranking to the algorithms.

Findings

This study provided a qualitative framework which can be used to identify the most appropriate optimization algorithm for the MOTP beforehand. The outcome suggested that non-dominated sorting genetic algorithm (NSGA) was the most appropriate algorithm whereas linear programming was found to be the least appropriate for MOTPs.

Originality/value

The devised framework may provide a useful insight for the construction practitioners to choose an effective optimization algorithm tool for preparing an efficient project schedule aiming toward the desired optimal improvement in achieving the various objectives. Identification of the absolute best optimization algorithm is very difficult to attain due to various problems such as the inherent complexities and intricacies of the algorithm and different class of problems. However, the devised framework offers a primary insight into the selection of the most appropriate alternative among the available algorithms.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 October 2018

Subhamita Chakraborty, Prasun Das, Naveen Kumar Kaveti, Partha Protim Chattopadhyay and Shubhabrata Datta

The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of…

Abstract

Purpose

The purpose of this paper is to incorporate prior knowledge in the artificial neural network (ANN) model for the prediction of continuous cooling transformation (CCT) diagram of steel, so that the model predictions become valid from materials engineering point of view.

Design/methodology/approach

Genetic algorithm (GA) is used in different ways for incorporating system knowledge during training the ANN. In case of training, the ANN in multi-objective optimization mode, with prediction error minimization as one objective and the system knowledge incorporation as the other, the generated Pareto solutions are different ANN models with better performance in at least one objective. To choose a single model for the prediction of steel transformation, different multi-criteria decision-making (MCDM) concepts are employed. To avoid the problem of choosing a single model from the non-dominated Pareto solutions, the training scheme also converted into a single objective optimization problem.

Findings

The prediction results of the models trained in multi and single objective optimization schemes are compared. It is seen that though conversion of the problem to a single objective optimization problem reduces the complexity, the models trained using multi-objective optimization are found to be better for predicting metallurgically justifiable result.

Originality/value

ANN is being used extensively in the complex materials systems like steel. Several works have been done to develop ANN models for the prediction of CCT diagram. But the present work proposes some methods to overcome the inherent problem of data-driven model, and make the prediction viable from the system knowledge.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 37