Search results

1 – 10 of 28
Article
Publication date: 7 September 2012

Song Hee Koo, Kyungmin Park, Hyunmin Hwang, Youngjae Yoo, Jong Hun Han, Kwonwoo Shin and Jeong Ho Cho

The purpose of this paper is to develop environmentally stable near‐infrared (NIR)‐absorbing windows by blending an NIRabsorbing dye and a thermally‐crosslinkable polymer.

Abstract

Purpose

The purpose of this paper is to develop environmentally stable near‐infrared (NIR)‐absorbing windows by blending an NIRabsorbing dye and a thermally‐crosslinkable polymer.

Design/methodology/approach

To enhance the environmental stability of the NIRabsorbing window, a poly(vinyl phenol‐co‐methyl methacrylate) (poly(VP‐co‐MMA)) prepolymer and a poly(melamine‐co‐formaldehyde) (PMF) cross‐linking agent were mixed, and thermal crosslinking was performed under mild conditions (100°C).

Findings

The resistance of the crosslinked hybrid films to heat, humidity, and ultraviolet radiation damage improved dramatically relative to the pristine NIRabsorbing dye. The improved environmental stability of the crosslinked NIR hybrid film resulted from the reduced free volume and restrictions in the molecular thermal dynamic motions of the polymer due to the presence of the crosslinked network surrounding the NIRabsorbing dye molecules.

Originality/value

The methods provided a novel, simple, and practical solution to improving environmentally stability of NIRabsorbing window.

Details

Pigment & Resin Technology, vol. 41 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 May 2013

Hyunmin Hwang, Moon Sung Kang, Jong Hun Han, Kwonwoo Shin and Jeong Ho Cho

The authors aimed to develop environmentally stable NIRabsorbing windows by blending a near‐infrared (NIR)‐absorbing dye and a photo‐crosslinkable polymer.

Abstract

Purpose

The authors aimed to develop environmentally stable NIRabsorbing windows by blending a near‐infrared (NIR)‐absorbing dye and a photo‐crosslinkable polymer.

Design/methodology/approach

To prepare an environmentally stable NIRabsorbing window, a NIRabsorbing dye was mixed with crosslinkable poly(vinyl cinnamate) (PVCn). The crosslinking of PVCn was carried out by photo‐dimerisation reaction of cinnamate with UV‐exposure at a wavelength of 254 nm for 4 min.

Findings

The resistance of the photo‐crosslinked hybrid films against humidity, heat, and ultraviolet radiation damage was improved dramatically relative to the pristine NIRabsorbing dye. These improvements result from the protection of NIRabsorbing dye to moisture exposure in the presence of the polymer network.

Originality/value

The simple and practical method resulted in a dramatic improvement in the environmental stability of NIRabsorbing window.

Details

Pigment & Resin Technology, vol. 42 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 April 2020

Libin Yang, Dong Wang, Hong Gao, Hui Cao, Yuzhen Zhao, Zongcheng Miao, Zhou Yang and Wanli He

This study aims to develop a new kind of functional low molecular weight organic dyes, which is highly efficient, meanwhile inexpensive and easily prepared and modified and can be…

Abstract

Purpose

This study aims to develop a new kind of functional low molecular weight organic dyes, which is highly efficient, meanwhile inexpensive and easily prepared and modified and can be used in photoacoustic (PA) imaging and photothermal therapy (PTT). To further realize the release of molecules under the biomedical condition, the releasing efficiency of micellar nanoparticles under different stimuli were represented.

Design/methodology/approach

A class of azo and Schiff base derivatives with different click reagents were characterized by PA imaging and photothermal (PT) experiments. The molecule with best PT effect was loaded into a temperature-stimuli-sensitive amphiphilic block copolymer which demonstrated the capability of releasing the polymers under the near-infrared (NIR) light of 650 nm.

Findings

The PA and PT effects of a series of azo and Schiff base derivatives with different click reagents were characterized. Introducing the click reagent F4-TCNQ can result in red shift of peaks of PA intensity. Stimulated with 650 nm laser irradiation, the polymer processed higher release rate than being stimulated by temperature stimuli.

Practical implications

This paper not only guides the design of NIR dyes with good PA intensity but also provides a method which has great potential for the application of NIR photothermal dyes in the field of biotechnology for controlled release.

Originality/value

This paper uses click reagents to modify azo and Schiff derivatives and an amphiphilic block copolymer under NIR light to realize controlled release.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 April 2023

Guillermo Monrós, Mario Llusar and José Antonio Badenes

The purpose of this study is the synthesis and characterization of a CMYK palette (cyan of Cr-BiVO4, magenta of Pr-CeO2, yellow of Bi-(Ce,Zr)O2 composite and black of YMnO3) as an…

Abstract

Purpose

The purpose of this study is the synthesis and characterization of a CMYK palette (cyan of Cr-BiVO4, magenta of Pr-CeO2, yellow of Bi-(Ce,Zr)O2 composite and black of YMnO3) as an eco-friendly polyfunctional palette that combines (a) high near-infrared reflectance (cool pigments) that allows moderate temperatures in indoor environments and the urban heat island effect; (b) photocatalytic activity for the degradation of organic contaminants of emerging concern of substrates in solution (such as Orange II or methylene blue) and gaseous (NOx and volatile organic compounds such as acetaldehyde or toluene); (c) X-ray radiation attenuators associated with bismuth ions; and (d) biocidal effect combined with co-doping with bactericidal agents.

Design/methodology/approach

Pigments were prepared by a solid-state reaction and characterized by X-ray diffraction, diffuse reflectance spectroscopy, photocatalytic activity over Orange II and scanning electron microscopy.

Findings

The behaviour of the proposed palette was compared to that of a commercial inkjet palette, and an improvement in all functionalities was observed.

Social implications

The functionalities of pigments allow the building envelope and indoor walls to exhibit temperature-moderating effects (with the additional effects of moderating global warming and increasing air conditioning efficiency), purification and disinfection of both indoor and outdoor air, and radiation attenuation.

Originality/value

The proposed palette and its polyfunctional characterization are novel.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2016

Galal H. Elgemeie and Doaa M. Masoud

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to…

1268

Abstract

Purpose

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to heat chemical reactions on a laboratory scale. Also, many scientists use microwave technology in the industry. They have turned to microwave synthesis as a frontline methodology for their projects. Microwave and microwave-assisted organic synthesis (MAOS) has emerged as a new “lead” in organic synthesis.

Design/methodology/approach

Using microwave radiation for synthesis and design of fluorescent dyes is of great interest, as it decreases the time required for synthesis and the synthesized dyes can be applied to industrial scale.

Findings

The technique offers many advantages, as it is simple, clean, fast, efficient and economical for the synthesis of a large number of organic compounds. These advantages encourage many chemists to switch from the traditional heating method to microwave-assisted chemistry.

Practical implications

This review highlights applications of microwave chemistry in organic synthesis for fluorescent dyes. Fluorescents are a fairly new and very heavily used class of organics. These materials have many applications, as a penetrant liquid for crack detection, synthetic resins, plastics, printing inks, non-destructive testing and sports ball dyeing.

Originality/value

The aim value of this review is to define the scope and limitation of microwave synthesis procedures for the synthesis of novel fluorescent dyes via a simple and economic way.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2017

Janarthanan M. and Senthil Kumar M.

Medical textile is one aspect of technical textiles and it is classified according to performance and functional properties for hygienic and healthcare products. Seaweeds have…

Abstract

Purpose

Medical textile is one aspect of technical textiles and it is classified according to performance and functional properties for hygienic and healthcare products. Seaweeds have curative powers for curing most degenerative diseases. The paper aims to discuss these issues.

Design/methodology/approach

The present study focusses on the extraction of dyes from five seaweeds such as Ulva reticulata, Ulva lactuca, Sargassum wightii, Padina tetrastomatica and Acanthophora spicefera. The presence of bioactive compounds, antioxidant and antimicrobial properties of dye extracted from seaweeds was analysed. The dye extracted from green seaweed was applied on cotton fabric to obtain antimicrobial and other properties used to make non- implantable materials.

Findings

A maximum antioxidant inhibition percentage of 86.48+2.84 and a maximum antibacterial activity of 27 mm inhibition zone were obtained on the fabric treated with the dye extract from the Ulva lactuca seaweed. The physical properties such as tensile strength and tearing strength did not show much significant difference in untreated and treated fabric. The air permeability, water absorbency and wicking behaviour of treated fabric were reduced compared with untreated fabric. The washing and rubbing properties of treated fabric were very good after repeated washing.

Originality/value

This bioactive fabric has been used for non-implantable materials such as wound healing, face mask, surgical gowns and hygienic textiles in recent years.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 July 2021

Lihong Bao, Suyi Cao and Lin Tu

This paper aims to provide a flexible polyurethane (PU) film with visible light trapping ability, photothermal conversion and energy storage performance by covalently bonded a…

Abstract

Purpose

This paper aims to provide a flexible polyurethane (PU) film with visible light trapping ability, photothermal conversion and energy storage performance by covalently bonded a visible light absorbing dye into the polymer through copolymerization.

Design/methodology/approach

For this target solution copolymerization of diphenyl-methane-diisocyanate (MDI), poly(1,4-butylene adipate) (PBA2000), polyethylene glycol (PEG) of different molecular weight, self-made dye, 1,4-butanediol (BuOH) was carried out in a flame-dried flask under an inert nitrogen (N2) atmosphere. First, an isocyanate-terminated prepolymer of dried PEG, MDI and PBA2000 was prepared in dimethylformamide and stirred for 1 h at 35°C. Then, self-made dye and 1, 4-butanediol (BuOH) were added and heated at 85°C for 3 h to get photothermal conversion polyurethane (PTPU) solution. Allowed the solution to dry at room temperature for seven days and then at 65°C for 12 h to get PTPU films.

Findings

The flexible PU films with photothermal conversion and energy storage performances were successfully synthesized and the functional films presented both excellent energy storage and mechanical property when the molecular weight of PEG was in the range of 6,000∼10,000.

Research limitations/implications

The materials that were used in this research paper had a reasonably low cost. Also, the procedures for the synthesis of dye and polymers were extremely easy because there was no need for high pressure or temperature and no dangerous solvents were used.

Practical implications

The photothermal conversion property and mechanical performance of the synthesized flexible PU films were characterized. The results have proved that these films were soft and elastic, and have certain photothermal conversion and energy storage ability, thus can be used in the surface finishing of special fabric and leather.

Originality/value

Visible light trapping photothermal conversion PU flexible film with energy storage capability was prepared for the first time.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 March 2020

Majid Mazhar, Majid Abdouss, Farhad Zarifi and Mojdeh Zargaran

The purpose of this study is to investigate the performance of eight perylene diimide pigments as a hypothetical building facades using EnergyPlus.

Abstract

Purpose

The purpose of this study is to investigate the performance of eight perylene diimide pigments as a hypothetical building facades using EnergyPlus.

Design/methodology/approach

A hypothetical building located in Tehran is modeled using EnergyPlus, and the effectiveness of the pigments was examined. Furthermore, the performance of the pigments was compared with those of common commercial black (carbon black) and red (iron oxide) pigments.

Findings

The results show that the studied black pigments reduce the cooling energy demand up to 37 per cent in comparison with carbon black paint and the red ones, which reduce the value by as much as 32 per cent in comparison to iron oxide.

Originality/value

This study demonstrates that the application of cool paints rather than common paints will significantly reduce the cooling energy demand and subsequent costs.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 28