Search results

1 – 2 of 2
Article
Publication date: 4 August 2021

Sachin Ambade, Chetan Tembhurkar, Awanikumar P. Patil, Prakash Pantawane and Ravi Pratap Singh

The purpose of this study is on AISI 409 M ferritic stainless steel (FSS) which is developing a preferred choice for railway carriages, storage tanks and reactors in chemical…

Abstract

Purpose

The purpose of this study is on AISI 409 M ferritic stainless steel (FSS) which is developing a preferred choice for railway carriages, storage tanks and reactors in chemical plants. The intergranular corrosion behavior of welded SS 409 M has been studied in H2SO4 solution (0.5 M) with the addition of NH4SCN (0.01 M) with different heat input. As this study is very important in context of various chemical and petrochemical industries.

Design/methodology/approach

The microstructure, mechanical properties and intergranular corrosion properties of AISI 409 M FSS using shielded metal arc welding were investigated. Shielded metal arc welding with different welding current values are used to change the heat input in the joints resulted in the microstructural variations. The microstructure of the welded steel was carefully inspected along the width of the heat-affected zone (HAZ) and the transverse-section of the thin plate.

Findings

The width of heat affected zone (3.1,4.2 and 5.8 mm) increases on increasing the welding heat input. Due to change in grain size (grain coarsening) as HAZ increased. From the microstructure, it was observed that the large grain growth which is dendritic and the structure become finer to increase in welding heat input. For lower heat input, the maximum microhardness value (388HV) was observed compared with medium (351 HV) and higher heat input (344 HV), which is caused by a rapid cooling rate and the depleted area of chromium (Cr) and nickel (Ni). The increase in weld heat input decreases tensile strength, i.e. 465 MPa, 440 MPa and 418 MPa for low, medium and high heat input, respectively. This is because of grain coarsening and chromium carbide precipitation in sensitized zone and wider HAZ. The degree of sensitization increases (27.04%, 31.86% and 36.08%) to increase welding heat input because of chromium carbide deposition at the grain boundaries. The results revealed that the higher degree of sensitization and the difference in intergranular corrosion behavior under high heat input are related to the grain growth in the HAZ and the weld zone.

Originality/value

The study is based on intergranular corrosion behavior of welded SS 409 M in H2SO4 solution (0.5 M) with the addition of NH4SCN (0.01 M) with different heat input which is rarely found in literature.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2020

Ankur V. Bansod, Awanikumar P. Patil and Sourabh Shukla

Low nickel austenitic stainless steel (ASS) has attracted much attention worldwide because of its economical price. This study aims to investigate the effect of different…

Abstract

Purpose

Low nickel austenitic stainless steel (ASS) has attracted much attention worldwide because of its economical price. This study aims to investigate the effect of different corrosive environments on the corrosion behavior of chrome-manganese (Cr-Mn) ASS. The tests were carried out as a function of H2SO4 concentrations, temperature and addition of ammonium thiocyanate (NH4SCN) (0.01 M). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used to study the corrosion behavior of Cr-Mn ASS. It was observed that with increasing H2SO4 concentration, temperature and with the addition of NH4SCN solution, icorr, icrit and ipassive values increased. EIS data show decreasing charge transfer resistance value with increasing concentration and temperature. Higher corrosion rate with increasing temperature and concentration of H2SO4 is related to the anions (SO42−), which is responsible for reducing the stability of passive films. With the presence of 0.01 M NH4SCN thiocyanate (SCN anion), there is a higher dilution of the passive film resulting in a higher corrosion rate. Energy-dispersive spectroscopy (EDS) analysis reveals the adsorption of sulfur on the surface in NH4SCN containing a solution. The significant presence of counter ions and the adsorbed sulfur species on the steel surface play a vital role in corrosion behavior.

Design/methodology/approach

All the experiments were performed on a 3 mm thick sheet of Cr-Mn ASS (202 ASS) in hot rolled condition. The samples were then annealed at 1,050°C for 1 h, followed by water quenching. For microstructural examination, they were electrochemically etched in 10 Wt.% oxalic acid solution at 1 amp for 90 s. A computer-controlled Potentiostat (Biologic VMP-300) was used. After the cell was set up, the working electrode (WE) was electrostatically cleaned at −1 V vs saturated calomel electrode (SCE) for 30 s to remove the air-formed film. Then, WE were allowed to attain stable open circuit potential (OCP) for 1 h, following by the EIS test and potentiodynamic polarization test. The polarization test was started from a cathodic potential (−1.2 V vs SCE) and continued up to an anodic potential (1.6 V vs SCE) a scan rate of 0.1667 mV/s. EIS experiment was conducted on the same instrument by using a sinusoidal AC signal of 10 mV in a frequency range of 1,000,000 to 0.01 Hz at OCP.

Findings

Potentiodynamic polarization graph shows that with the increase in sulphuric acid concentration. Increasing temperature from 20°C to 80°C in 0.5 M H2SO4 solution increases the corrosion rate (icorr) of Cr-Mn ASS. On the addition of 0.01 M NH4SCN to the sulfuric acid solution (0.1, 0.5 and 1 M) the corrosion rate increases drastically almost four to five times. EDS and XRD analysis shows the presence of sulfur over the oxide film and preferential site for dissolution of Cr and Mn at the steel surface when NH4SCN is added to the sulfuric acid solution.

Originality/value

A study on the corrosion behavior of Cr-Mn ASS is scanty according to the author’s knowledge. Therefore, the present study will investigate the corrosion behavior of Cr-Mn ASS on SO4−2 anions, temperature and the addition of SCN ion in sulfuric acid.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 2 of 2