Search results

1 – 10 of 108
Article
Publication date: 31 August 2021

Zbigniew Rarata

The purpose of this paper is to investigate airfoil’s tonal noise reduction mechanism when deploying surface irregularities, such as surface waviness by means of spatial stability…

148

Abstract

Purpose

The purpose of this paper is to investigate airfoil’s tonal noise reduction mechanism when deploying surface irregularities, such as surface waviness by means of spatial stability analyses.

Design/methodology/approach

Flow field calculations over smooth and wavy-surface NACA 0012 airfoils at 2° angle of attack and at Reynolds number of 200,000 are performed using the large eddy simulation (LES) approach. Three geometrical configurations are considered: a smooth NACA 0012 airfoil, wavy surface on the suction side (SS) and wavy surface on the pressure side (PS). The spatial stability analyses using the LES-generated flow fields are conducted and validated against the Orr-Sommerfeld stability analysis for the smooth airfoil configuration.

Findings

The spatial stability analyses show that inclusion of the wavy-type modification on the SS of the airfoil does not lead to altering of the acoustic feedback loop mechanism, with respect to the mechanism observed for the smooth airfoil configuration. In contrast, applying the surface modifications to the airfoil PS leads to a significant reduction of the amplification range of disturbances in the vicinity of the trailing edge for the frequency of the acoustic feedback loop mechanism.

Practical implications

The spatial analyses using, for example, LES-generated flow fields can be widely used to determine acoustic sources and associated distributions of amplifications for a wide range of applications in the aeroacoustics.

Originality/value

The spatial stability analysis approach based on flow fields computed a priori using the LES method has been introduced, validated and used to determine behaviour of the acoustic feedback loop when accurate reconstruction of geometry effects is required.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 December 2019

Aslesha Bodavula, Rajesh Yadav and Ugur Guven

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Abstract

Purpose

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Design/methodology/approach

Effect of protrusions is investigated through numerical simulation of two-dimensional Navier–Stokes equations using a finite volume solver. Turbulent stresses are resolved through the transition Shear stress transport (four-equation) turbulence model.

Findings

The small protrusion located at 0.05c and 0.1c significantly improve the lift coefficient by up to 36% in the post-stall regime. It also alleviates the leading edge stall. The larger protrusions increase the drag significantly along with significant degradation of lift characteristics in the pre-stall regime as well. The smaller protrusions also increase the frequency of the vortex shedding.

Originality/value

The effect of macroscopic protrusions or deposits in rarely investigated. The delay in stall shown by smaller protrusions can be beneficial to micro aerial vehicles. The smaller protrusions increase the frequency of the vortex shedding, and hence, can be used as a tool to enhance energy production for energy harvesters based on vortex-induced vibrations and oscillating wing philosophy.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 November 2021

M. R. Nived, Bandi Sai Mukesh, Sai Saketha Chandra Athkuri and Vinayak Eswaran

This paper aims to conduct, a detailed investigation of various Reynolds averaged Navier–Stokes (RANS) models to study their performance in attached and separated flows. The…

Abstract

Purpose

This paper aims to conduct, a detailed investigation of various Reynolds averaged Navier–Stokes (RANS) models to study their performance in attached and separated flows. The turbulent flow over two airfoils, namely, National Advisory Committee for Aeronautics (NACA)-0012 and National Aeronautics and Space Administration (NASA) MS(1)-0317 with a static stall setup at a Reynolds number of 6 million, is chosen to investigate these models. The pre-stall and post-stall regions, which are in the range of angles of attack 0°–20°, are simulated.

Design/methodology/approach

RANS turbulence models with the Boussinesq approximation are the most commonly used cost-effective models for engineering flows. Four RANS models are considered to predict the static stall of two airfoils: Spalart–Allmaras (SA), Menter’s kω shear stress transport (SST), k – kL and SA-Bas Cakmakcioglu modified (BCM) transition model. All the simulations are performed on an in-house unstructured-grid compressible flow solver.

Findings

All the turbulence models considered predicted the lift and drag coefficients in good agreement with experimental data for both airfoils in the attached pre-stall region. For the NACA-0012 airfoil, all models except the SA-BCM over-predicted the stall angle by 2°, whereas SA-BCM failed to predict stall. For the NASA MS(1)-0317 airfoil, all models predicted the lift and drag coefficients accurately for attached flow. But the first three models showed even further delayed stall, whereas SA-BCM again did not predict stall.

Originality/value

The numerical results at high Re obtained from this work, especially that of the NASA MS(1)-0317, are new to the literature in the knowledge of the authors. This paper highlights the inability of RANS models to predict the stall phenomenon and suggests a need for improvement in modeling flow physics in near- and post-stall flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Chawki Abdessemed, Yufeng Yao, Abdessalem Bouferrouk and Pritesh Narayan

The purpose of this paper is to use dynamic meshing to perform CFD analyses of a NACA 0012 airfoil fitted with a morphing trailing edge (TE) flap when it undergoes static and…

Abstract

Purpose

The purpose of this paper is to use dynamic meshing to perform CFD analyses of a NACA 0012 airfoil fitted with a morphing trailing edge (TE) flap when it undergoes static and time-dependent morphing. The steady CFD predictions of the original and morphing airfoils are validated against published data. The study also investigates an airfoil with a hinged TE flap for aerodynamic performance comparison. The study further extends to an unsteady CFD analysis of a dynamically morphing TE flap for proof-of-concept and also to realise its potential for future applications.

Design/methodology/approach

An existing parametrization method was modified and implemented in a user-defined function (UDF) to perform dynamic meshing which is essential for morphing airfoil unsteady simulations. The results from the deformed mesh were verified to ensure the validity of the adopted mesh deformation method. ANSYS Fluent software was used to perform steady and unsteady analysis and the results were compared with computational predictions.

Findings

Steady computational results are in good agreement with those from OpenFOAM for a non-morphing airfoil and for a morphed airfoil with a maximum TE deflection equal to 5 per cent of the chord. The results obtained by ANSYS Fluent show that an average of 6.5 per cent increase in lift-to-drag ratio is achieved, compared with a hinged flap airfoil with the same TE deflection. By using dynamic meshing, unsteady transient simulations reveal that the local flow field is influenced by the morphing motion.

Originality/value

An airfoil parametrisation method was modified to introduce time-dependent morphing and used to drive dynamic meshing through an in-house-developed UDF. The morphed airfoil’s superior aerodynamic performance was demonstrated in comparison with traditional hinged TE flap. A methodology was developed to perform unsteady transient analysis of a morphing airfoil at high angles of attack beyond stall and to compare with published data. Unsteady predictions have shown signs of rich flow features, paving the way for further research into the effects of a dynamic flap on the flow physics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Masoud Kharati-koopaee and Mahmood Fallahzadeh-abarghooee

This paper aims to study the effect of corrugated skins on the aerodynamic performance of the cambered NACA 0012 airfoils at different corrugations parameters, maximum cambers…

Abstract

Purpose

This paper aims to study the effect of corrugated skins on the aerodynamic performance of the cambered NACA 0012 airfoils at different corrugations parameters, maximum cambers, Reynolds numbers and maximum camber locations.

Design/methodology/approach

In this work, numerical approach is concerned, and results are obtained based on the finite volume approach. To characterize the effect of corrugated skins, the NACA 0012-corrugated airfoil section is chosen as the base airfoil, and different cambered corrugated airfoil sections are obtained by inclusion the camber to the base airfoil. In this research, the corrugation shape is a sinusoidal wave and corrugated skins are in the aft 30 per cent of airfoil chord. To investigate the effect of corrugations on the cambered sections, the drag coefficient and averaged lift curve slope for the corrugated airfoils are compared to those of the corresponding smooth sections.

Findings

Results indicate that the effect of increase in the maximum camber and also Reynolds number on the relative zero-incidence drag coefficient is of little importance at low corrugation amplitudes, whereas at high corrugation, amplitude results in different behaviors. It is found that as the maximum camber increases, the deterioration in the relative curve slope introduced by corrugated skins is reduced, and reduction in this deterioration is significant for high corrugation amplitudes airfoils. It is shown that an increase in the maximum camber location has nearly no effect on the relative zero-incidence drag coefficient and also relative lift curve slope.

Originality/value

The outcome of the present research provides the clues for better understanding of the effect of different corrugations parameters on the aerodynamic performance of the unmanned air vehicles to have as high aerodynamic performance as possible in different mission profiles of such vehicles.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 June 2019

Mohamed Arif Raj Mohamed, Ugur Guven and Rajesh Yadav

The purpose of this paper is to achieve an optimum flow separation control over the airfoil using passive flow control method by introducing bio-inspired nose near the leading…

Abstract

Purpose

The purpose of this paper is to achieve an optimum flow separation control over the airfoil using passive flow control method by introducing bio-inspired nose near the leading edge of the NACA 2412 airfoil.

Design/methodology/approach

Two distinguished methods have been implemented on the leading edge of the airfoil: forward facing step, which induces multiple accelerations at low angle of attack, and cavity/backward facing step, which creates recirculating region (axial vortices) at high angle of attack.

Findings

The porpoise airfoil (optimum bio-inspired nose airfoil) delays the flow separation and improves the aerodynamic efficiency by increasing the lift and decreasing the parasitic drag. The maximum increase in aerodynamic efficiency is 22.4 per cent, with an average increase of 8.6 per cent at all angles of attack.

Research limitations/implications

The computational analysis has been done for NACA 2412 airfoil at low subsonic speed.

Practical implications

This design improves the aerodynamic performance and increases structural strength of the aircraft wing compared to other conventional high-lift devices and flow-control devices.

Originality/value

Different bio-inspired nose designs which are inspired by the cetacean species have been analysed for NACA 2412 airfoil, and optimum nose design (porpoise airfoil) has been found.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 2022

Surekha Rathi Samundi D. and Rajasekar R.

This study aims to investigate the wake behind an oscillating airfoil at a various angle of incidence and Reynolds number in a deep dynamic stall condition.

Abstract

Purpose

This study aims to investigate the wake behind an oscillating airfoil at a various angle of incidence and Reynolds number in a deep dynamic stall condition.

Design/methodology/approach

NACA 0012 airfoil is allowed to undergo harmonic pitching motion about the quarter chord axis at Reynolds numbers of 0.5 * 105, 1.17 * 105, 1.7 * 105 and 2.12 * 105, and the reduced frequency of 0.1. The experiments are conducted at a set of mean and amplitude angle of attack that covered the angle of incidence from −5° to 25°. The wake rake is placed at a distance of one chord from the trailing edge of the airfoil.

Findings

The hysteresis of the flow during the upstroke and the downstroke motion are captured. The huge growth in the velocity defect and the wake thickness beyond the angle of attack of 15° explicate the appearance of the strong unsteady effects on the wake. The results also show that at the reduced frequency of 0.1, the wake structure is of drag producing type due to the momentum deficit.

Originality/value

Streamwise velocity profile and the turbulent intensity profiles are presented to show the effects of Reynolds number and angle of incidence on the wake behind the oscillating airfoil at the reduced frequency of 0.1, and in the intermediate range of Reynolds number is the novelty of the study.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 May 2020

Mohammad Reza Saffarian, Farzad Jamaati, Amin Mohammadi, Fatemeh Gholami Malekabad and Kasra Ayoubi Ayoubloo

This study aims to evaluate the amount of entropy generation around the NACA 0012 airfoil. This study takes place in four angles of attack of 0°, 5°, 10° and 16° and turbulent…

Abstract

Purpose

This study aims to evaluate the amount of entropy generation around the NACA 0012 airfoil. This study takes place in four angles of attack of 0°, 5°, 10° and 16° and turbulent regime. Also, the variation in the amount of generated entropy by the changes in temperature and Mach number is investigated.

Design/methodology/approach

The governing equations are solved using computational fluid dynamics techniques. The continuity, momentum and energy equations and the equations of the SST k-ω turbulence model are solved. The entropy generation at different angles of attack is calculated and compared. The effect of various parameters in the generation of entropy is presented.

Findings

Results show that the major part of the entropy generation is at the tip of the airfoil. Also, increasing the angle of attack will increase the entropy generation. Also, results show that with increasing the temperature of air colliding with the airfoil, the production of entropy decreases.

Originality/value

Entropy generation is investigated in the NACA 0012 airfoil at various angles of attack and turbulent flow using the SST turbulence model. Also, the effects of temperature and Mach number on the entropy generation are investigated.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 June 2020

Mehran Masdari, Milad Mousavi and Mojtaba Tahani

One of the best methods to improve wind turbine aerodynamic performance is modification of the blade’s airfoil. The purpose of this paper is to investigate the effects of gurney…

Abstract

Purpose

One of the best methods to improve wind turbine aerodynamic performance is modification of the blade’s airfoil. The purpose of this paper is to investigate the effects of gurney flap geometry and its oscillation parameters on the pitching NACA0012 airfoil.

Design/methodology/approach

This numerical solution has been carried out for different cases of gurney flap mounting angles, heights, reduced frequencies and oscillation amplitudes, then the results were compared to each other. The finite volume method was used for the discretization of the governing equations, and the PISO algorithm was used to solve the equations. Also, the “SST” was adopted as the turbulence model in the simulation.

Findings

In this paper, the different parameters of gurney flap were investigated. The results showed that the best range of gurney flap height are between 1 and 3.2% of chord and the best ratio of lifting to drag coefficient is achieved in gurney flap with an angle of 90° relative to the chord direction. The dynamic stall angle of the airfoil with gurney flap decreases were compared to without gurney flap. Earlier LEV formation can be one of the main reasons for decreasing the dynamic stall angle of the airfoil with gurney flap. Increasing the reduced frequency and oscillation amplitude causes rising of maximum lift coefficient and consequently lift curve slope. Moreover, gurney flap with mounting angle has a lower hinge moment than the gurney flap without mounting angle but with the same vertical axis length. So, there is more complexity in structural design concerning the gurney flap without mounting angle.

Practical implications

Improving aerodynamic efficiency of airfoils is vital for obtaining more output power in VAWTs. Gurney flaps are one of the best mechanisms to increase the aerodynamic performance of the airfoil and increases the efficiency of VAWTs.

Originality/value

Investigating the hinge moment on the connection point of the airfoil, gurney flap and try to compare the gurney flap with and without angle.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 108