Search results

1 – 10 of over 21000
Article
Publication date: 4 September 2017

Sagar Sikder, Subhash Chandra Panja and Indrajit Mukherjee

The purpose of this paper is to develop a new easy-to-implement distribution-free integrated multivariate statistical process control (MSPC) approach with an ability to recognize…

Abstract

Purpose

The purpose of this paper is to develop a new easy-to-implement distribution-free integrated multivariate statistical process control (MSPC) approach with an ability to recognize out-of-control points, identify the key influential variable for the out-of-control state, and determine necessary changes to achieve the state of statistical control.

Design/methodology/approach

The proposed approach integrates the control chart technique, the Mahalanobis-Taguchi System concept, the Andrews function plot, and nonlinear optimization for multivariate process control. Mahalanobis distance, Taguchi’s orthogonal array, and the main effect plot concept are used to identify the key influential variable responsible for the out-of-control situation. The Andrews function plot and nonlinear optimization help to identify direction and necessary correction to regain the state of statistical control. Finally, two different real life case studies illustrate the suitability of the approach.

Findings

The case studies illustrate the potential of the proposed integrated multivariate process control approach for easy implementation in varied manufacturing and process industries. In addition, the case studies also reveal that the multivariate out-of-control state is primarily contributed by a single influential variable.

Research limitations/implications

The approach is limited to the situation in which a single influential variable contributes to out-of-control situation. The number and type of cases used are also limited and thus generalization may not be debated. Further research is necessary with varied case situations to refine the approach and prove its extensive applicability.

Practical implications

The proposed approach does not require multivariate normality assumption and thus provides greater flexibility for the industry practitioners. The approach is also easy to implement and requires minimal programming effort. A simple application Microsoft Excel is suitable for online implementation of this approach.

Originality/value

The key steps of the MSPC approach are identifying the out-of-control point, diagnosing the out-of-control point, identifying the “influential” variable responsible for the out-of-control state, and determining the necessary direction and the amount of adjustment required to achieve the state of control. Most of the approaches reported in open literature are focused only until identifying influencing variable, with many restrictive assumptions. This paper addresses all key steps in a single integrated distribution-free approach, which is easy to implement in real time.

Details

International Journal of Quality & Reliability Management, vol. 34 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 26 July 2021

Imane Mjimer, ES-Saadia Aoula and EL Hassan Achouyab

This study aims to monitor the overall equipment effectiveness (OEE) indicator that is one of the best indicators used to monitor the performance of the company by the multivariate

Abstract

Purpose

This study aims to monitor the overall equipment effectiveness (OEE) indicator that is one of the best indicators used to monitor the performance of the company by the multivariate control chart.

Design/methodology/approach

To improve continually the performance of a company, many research studies tend to apply Lean six sigma approach. It is one of the best ways used to reduce the variability in the process by using the univariate control chart to know the trend of the variable and make the action before process deviation. Nevertheless, and when the need is to monitor two or more correlated characteristics simultaneously, the univariate control chart will be unable to do it, and the multivariate control chart will be the best way to successfully monitor the correlated characteristics.

Findings

For this study, the authors have applied the multivariate control chart to control the OEE performance rate which is composed by the quality rate, performance rate and availability rate, and the relative work from which the authors have adopted the same methodology (Hadian and Rahimifard, 2019) was done for project monitoring, which is done by following different indicators such as cost, and time; the results of this work shows that by applying this tool, all project staff can meet the project timing with the cost already defined at the beginning of the project. The idea of monitoring the OEE rate comes because the OEE contains the three correlated indicators, we can’t do the monitoring of the OEE just by following one of the three because data change and if today we have the performance and quality rate are stable, and the availability is not, tomorrow we can another indicator impacted and, in this case, the univariate control chart can’t response to our demand. That’s why we have choose the multivariate control chart to prevent the trend of OEE performance rate. Otherwise, and according to production planning work, they try to prevent the downtime by switching to other references, but after applying the OEE monitoring using the multivariate control chart, the company can do the monitoring of his ability to deliver the good product at time to meet customer demand.

Research limitations/implications

The application was done per day, it will be good to apply it per shift in order to have the ability to take the fast reaction in case of process deviation. The other perspective point we can have is to supervise the process according to the control limits found and see if the process still under control after the implementation of the Multivariate control chart at the OEE Rate and if we still be able to meet customer demand in terms of Quantity and Quality of the product by preventing the process deviation using multivariate control chart.

Practical implications

The implication of this work is to provide to the managers the trend of the performance of the workshop by measuring the OEE rate and by following if the process still under control limits, if not the reaction plan shall be established before the process become out of control.

Originality/value

The OEE indicator is one of the effective indicators used to monitor the ability of the company to produce good final product, and the monitoring of this indicator will give the company a visibility of the trend of performance. For this reason, the authors have applied the multivariate control chart to supervise the company performance. This indicator is composed by three different rates: quality, performance and availability rate, and because this tree rates are correlated, the authors have tried to search the best tool which will give them the possibility to monitor the OEE rate. After literature review, the authors found that many works have used the multivariate control chart, especially in the field of project: to monitor the time and cost simultaneously. After that, the authors have applied the same approach to monitor the OEE rate which has the same objective : to monitor the quality, performance and availability rate in the same time.

Details

International Journal of Lean Six Sigma, vol. 13 no. 4
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 31 December 2015

Jeffrey E. Jarrett

The purpose of this paper is to suggest better methods for monitoring the diagnostic and treatment services for providers of public health and the management of public health…

2035

Abstract

Purpose

The purpose of this paper is to suggest better methods for monitoring the diagnostic and treatment services for providers of public health and the management of public health services. In particular, the authors examine the construction and use of industrial quality control methods as applied to the public providers, in both the prevention and cure for infectious diseases and the quality of public health care providers in such applications including water quality standards, sewage many others. The authors suggest implementing modern multivariate applications of quality control techniques and/or better methods for univariate quality control common in industrial applications in the public health sector to both control and continuously improve public health services. These methods entitled total quality management (TQM) form the foundation to improve these public services.

Design/methodology/approach

The study is designed to indicate the great need for TQM analysis to utilize methods of statistical quality control. All this is done to improve public health services through implementation of quality control and improvement methods as part of the TQM program. Examples of its use indicate that multivariate methods may be the best but other methods are suggested as well.

Findings

Multivariate methods provide the best solutions when quality and reliability tests show indications that the variables observed are inter-correlated and correlated over time. Simpler methods are available when the above factors are not present.

Research limitations/implications

Multivariate methods will provide for better interpretation of results, better decisions and smaller risks of both Type I and Type II errors. Smaller risks lead to better decision making and may reduce costs.

Practical implications

Analysts will improve such things as the control of water quality and all aspects of public health when data are collected through experimentation and/or periodic quality management techniques.

Social implications

Public health will be better monitored and the quality of life will improve for all especially in places where public development is undertaking rapid changes.

Originality/value

The manuscript is original because it uses well known and scientific methods of analyzing data in area where data collection is utilized to improve public health.

Details

International Journal of Quality & Reliability Management, vol. 33 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 14 December 2021

Arijit Maji and Indrajit Mukherjee

The purpose of this study is to propose an effective unsupervised one-class-classifier (OCC) support vector machine (SVM)-based single multivariate control chart (OCC-SVM) to…

Abstract

Purpose

The purpose of this study is to propose an effective unsupervised one-class-classifier (OCC) support vector machine (SVM)-based single multivariate control chart (OCC-SVM) to simultaneously monitor “location” and “scale” shifts of a manufacturing process.

Design/methodology/approach

The step-by-step approach to developing, implementing and fine-tuning the intrinsic parameters of the OCC-SVM chart is demonstrated based on simulation and two real-life case examples.

Findings

A comparative study, considering varied known and unknown response distributions, indicates that the OCC-SVM is highly effective in detecting process shifts of samples with individual observations. OCC-SVM chart also shows promising results for samples with a rational subgroup of observations. In addition, the results also indicate that the performance of OCC-SVM is unaffected by the small reference sample size.

Research limitations/implications

The sample responses are considered identically distributed with no significant multivariate autocorrelation between sample observations.

Practical implications

The proposed easy-to-implement chart shows satisfactory performance to detect an out-of-control signal with known or unknown response distributions.

Originality/value

Various multivariate (e.g. parametric or nonparametric) control chart(s) are recommended to monitor the mean (e.g. location) and variance (e.g. scale) of multiple correlated responses in a manufacturing process. However, real-life implementation of a parametric control chart may be complex due to its restrictive response distribution assumptions. There is no evidence of work in the open literature that demonstrates the suitability of an unsupervised OCC-SVM chart to simultaneously monitor “location” and “scale” shifts of multivariate responses. Thus, a new efficient OCC-SVM single chart approach is proposed to address this gap to monitor a multivariate manufacturing process with unknown response distributions.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 25 July 2019

Yinhua Liu, Rui Sun and Sun Jin

Driven by the development in sensing techniques and information and communications technology, and their applications in the manufacturing system, data-driven quality control

Abstract

Purpose

Driven by the development in sensing techniques and information and communications technology, and their applications in the manufacturing system, data-driven quality control methods play an essential role in the quality improvement of assembly products. This paper aims to review the development of data-driven modeling methods for process monitoring and fault diagnosis in multi-station assembly systems. Furthermore, the authors discuss the applications of the methods proposed and present suggestions for future studies in data mining for quality control in product assembly.

Design/methodology/approach

This paper provides an outline of data-driven process monitoring and fault diagnosis methods for reduction in variation. The development of statistical process monitoring techniques and diagnosis methods, such as pattern matching, estimation-based analysis and artificial intelligence-based diagnostics, is introduced.

Findings

A classification structure for data-driven process control techniques and the limitations of their applications in multi-station assembly processes are discussed. From the perspective of the engineering requirements of real, dynamic, nonlinear and uncertain assembly systems, future trends in sensing system location, data mining and data fusion techniques for variation reduction are suggested.

Originality/value

This paper reveals the development of process monitoring and fault diagnosis techniques, and their applications in variation reduction in multi-station assembly.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 11 January 2022

Daniel Ashagrie Tegegne, Daniel Kitaw Azene and Eshetie Berhan Atanaw

This study aims to design a multivariate control chart that improves the applicability of the traditional Hotelling T2 chart. This new type of multivariate control chart displays…

Abstract

Purpose

This study aims to design a multivariate control chart that improves the applicability of the traditional Hotelling T2 chart. This new type of multivariate control chart displays sufficient information about the states and relationships of the variables in the production process. It is used to make better quality control decisions during the production process.

Design/methodology/approach

Multivariate data are collected at an equal time interval and are represented by nodes of the graph. The edges connecting the nodes represent the sequence of operation. Each node is plotted on the control chart based on their Hotelling T2 statistical distance. The changing behavior of each pair of input and output nodes is studied by the neural network. A case study from the cement industry is conducted to validate the control chart.

Findings

The finding of this paper is that the points and lines in the classic Hotelling T2 chart are effectively substituted by nodes and edges of the graph respectively. Nodes and edges have dimension and color and represent several attributes. As a result, this control chart displays much more information than the traditional Hotelling T2 control chart. The pattern of the plot represents whether the process is normal or not. The effect of the sequence of operation is visible in the control chart. The frequency of the happening of nodes is recognized by the size of nodes. The decision to change the product feature is assisted by finding the shortest path between nodes. Moreover, consecutive nodes have different behaviors, and that behavior change is recognized by neural network.

Originality/value

Modifying the classical Hotelling T2 control chart by integrating with the concept of graph theory and neural network is new of its kind.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 June 2006

Ramesh Marasini and Nashwan Dawood

The monitoring and control of business processes and their variables have strategic importance in order to respond to the dynamics of the world of business. Many monitoring…

585

Abstract

The monitoring and control of business processes and their variables have strategic importance in order to respond to the dynamics of the world of business. Many monitoring processes are focussed on controlling time and cost and the overall performance is evaluated through a standard set of key performance indicators. These passive approaches do not consider a holistic/system view and therefore ignore the interrelationships between various external and internal variables impacting a business process. This paper investigates an application of multivariate statistical process control techniques [mainly principal component analysis (PCA) and partial least squares (PLS)] which have been successfully used in process and chemical industries, to model, monitor, control and predict business process variables. A prototype, innovative managerial control system (IMCS), was developed to investigate the application of PCA and PLS techniques to monitor, control and predict business process performance. Data was collected and analysed using a case study in a precast concrete building products company. This study has proved that the PCA approach can be effectively used to control business processes. Also, the PLS approach is found to provide better forecasts as compared to commonly used decomposition method. The benefits and limitations of using multivariate statistical process control techniques as applied to business process control are highlighted.

Details

Construction Innovation, vol. 6 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 June 1998

Orlando O. Atienza, Loon Ching Tang and Beng Wah Ang

We propose a simple control‐charting scheme for simultaneously displaying univariate and multivariate process information. The proposed chart can be used as a diagnostic tool for…

7290

Abstract

We propose a simple control‐charting scheme for simultaneously displaying univariate and multivariate process information. The proposed chart can be used as a diagnostic tool for understanding the nature of out‐of‐control conditions in multivariate statistical process control (SPC). The chart is easy to implement and interpret. Two examples are given for illustration purposes.

Details

International Journal of Quality Science, vol. 3 no. 2
Type: Research Article
ISSN: 1359-8538

Keywords

Article
Publication date: 27 July 2012

Anupam Das, J. Maiti and R.N. Banerjee

Monitoring of a process leading to the detection of faults and determination of the root causes are essential for the production of consistent good quality end products with…

1715

Abstract

Purpose

Monitoring of a process leading to the detection of faults and determination of the root causes are essential for the production of consistent good quality end products with improved yield. The history of process monitoring fault detection (PMFD) strategies can be traced back to 1930s. Thereafter various tools, techniques and approaches were developed along with their application in diversified fields. The purpose of this paper is to make a review to categorize, describe and compare the various PMFD strategies.

Design/methodology/approach

Taxonomy was developed to categorize PMFD strategies. The basis for the categorization was the type of techniques being employed for devising the PMFD strategies. Further, PMFD strategies were discussed in detail along with emphasis on the areas of applications. Comparative evaluations of the PMFD strategies based on some commonly identified issues were also carried out. A general framework common to all the PMFD has been presented. And lastly a discussion into future scope of research was carried out.

Findings

The techniques employed for PMFD are primarily of three types, namely data driven techniques such as statistical model based and artificial intelligent based techniques, priori knowledge based techniques, and hybrid models, with a huge dominance of the first type. The factors that should be considered in developing a PMFD strategy are ease in development, diagnostic ability, fault detection speed, robustness to noise, generalization capability, and handling of nonlinearity. The review reveals that there is no single strategy that can address all aspects related to process monitoring and fault detection efficiently and there is a need to mesh the different techniques from various PMFD strategies to devise a more efficient PMFD strategy.

Research limitations/implications

The review documents the existing strategies for PMFD with an emphasis on finding out the nature of the strategies, data requirements, model building steps, applicability and scope for amalgamation. The review helps future researchers and practitioners to choose appropriate techniques for PMFD studies for a given situation. Further, future researchers will get a comprehensive but precise report on PMFD strategies available in the literature to date.

Originality/value

The review starts with identifying key indicators of PMFD for review and taxonomy was proposed. An analysis was conducted to identify the pattern of published articles on PMFD followed by evolution of PMFD strategies. Finally, a general framework is given for PMFD strategies for future researchers and practitioners.

Details

International Journal of Quality & Reliability Management, vol. 29 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 October 2011

Florbela Correia, Rui Nêveda and Pedro Oliveira

This article seeks to explain how to monitor the chronic obstructive disease patient and control any complications so that timely treatment can be applied.

Abstract

Purpose

This article seeks to explain how to monitor the chronic obstructive disease patient and control any complications so that timely treatment can be applied.

Design/methodology/approach

Control charts and statistical process control (SPC) theory were used on chronic respiratory patient follow‐up and control. Controlling several variables simultaneously, using univariate charts, can be misleading, more so when there are correlated variables, so multivariate and univariate control charts were studied.

Findings

One‐sided control charts are preferable when the aim is to detect changes in the mean solely in one direction. Thus, one‐sided, univariate and multivariate charts were built, which identified previously undetected out‐of‐control events.

Research limitations/implications

The study's main limitation is its retrospective nature. However, following‐up individual patients can highlight medical therapy effects.

Practical implications

The article concludes that control charts, in particular one‐sided ones, are a valuable tool for monitoring chronic respiratory patients, thus contributing to medical decision making.

Originality/value

The article highlights control chart application to chronic respiratory patient follow‐up, permitting a global view of patient evolution over time.

Details

International Journal of Health Care Quality Assurance, vol. 24 no. 8
Type: Research Article
ISSN: 0952-6862

Keywords

1 – 10 of over 21000