Search results

1 – 10 of 47
Article
Publication date: 21 August 2023

Mohammad A. Hassanain, Ibrahim Al-Suwaiti and Ahmed M. Ibrahim

This paper aims to provide an exemplary application of an indicative post-occupancy evaluation (POE) on an organizational multistorey residential apartment building.

Abstract

Purpose

This paper aims to provide an exemplary application of an indicative post-occupancy evaluation (POE) on an organizational multistorey residential apartment building.

Design/methodology/approach

This research comprises of mixed qualitative and quantitative approaches. The methodology commences with a review of the recent literature, identification of performance elements, conduct of walk-through, distribution and collection of users' surveys and the development of short and long-term recommendations, where an adequate sample of users were approached for conducting a focus group interview session.

Findings

The research identifies 74 performance elements that were clustered into technical, namely (thermal, acoustic and visual comforts, indoor air quality and safety and security), functional, namely (design adequacy, finishing, furnishing, fittings and equipment and building surroundings) dimensions and behavioral, namely (apartment building attributes and managerial and logistical support). The questionnaire survey aimed to solicit users' opinions upon the occupied case study residential facility.

Originality/value

The research identifies areas of occupants' satisfaction and dissatisfaction in a typical multistorey residential building, as a part of a community housings for a mega organization, located in Saudi Arabia. The identification of these areas serves as a lesson learned for future developments, design considerations and implications. Hence, improving the well-being and comfort of its employees.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 17 February 2022

Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, Ayan Saha, Abu Sayed Mohammad Akid, Noor Md. Sadiqul Hasan, Mizanoor Rahman and Md. Abu Safayet

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional…

Abstract

Purpose

This study aims to present the variations of optimal seismic control of reinforced cement concrete (RCC) structure using different structural systems. Different third-dimensional mathematical models are used to examine the responses of multistory flexibly connected frames subjected to earthquake excitations.

Design/methodology/approach

This paper examined a G + 50 multi-storied high-rise structure, which is analyzed using different combinations of moment resistant frames, shear walls, seismic outrigger systems and seismic dampers to observe the effectiveness during ground motion against soft soil conditions. The damping coefficients of added dampers, providing both upper and lower levels are taken into consideration. A finite element modeling and analysis is generated. Then the nature of the structure exposed to ground motion is captured with response spectrum analysis, using BNBC-2020 for four different seismic zones in Bangladesh.

Findings

The response of the structure is investigated according to the amplitude of the displacements, drifts, base shear, stiffness and torsion. The numerical results indicate that adding dampers at the base level can be the most effective against seismic control. However, placing an outrigger bracing system at the middle and top end with shear wall can be the most effective for controlling displacements and drifts.

Originality/value

The response of high-rise structures to seismic forces in Bangladesh’s soft soil conditions is examined at various levels in this study. This study is an original research which contributes to the knowledge to build earthquake resisting high-rises in Bangladesh.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 April 2023

Mohamed Beneldjouzi, Mohamed Hadid and Nasser Laouami

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI…

Abstract

Purpose

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI effects in conjunction with local soil condition effects on the seismic response of typical multistory low- to mid-rise–reinforced concrete (RC) buildings resting on Algerian regulatory design sites through a global explicit transfer function (TF).

Design/methodology/approach

A preliminary quantification of SSI effects associated with site effects is carried out through a frequency-domain solution based on the concept of rock-to-soil surface displacement TF performed for each design site category. It results from the combination of the TFs of structure, foundation and soil and reflects how seismic waves are amplified due to changes in the geological contrast between the rock and overlying soil deposits. As well, response modification factors, denoting displacement ratios of the building responses within the flexible and site-structure conditions with respect to the fixed-base one, are carried out.

Findings

In the context of Algerian seismic regulation, the study provides a clear vision of how and when site or SSI effects are expected to be influential, as opposed to the fixed-base hypothesis still retained by the current regulation. This helps engineers to be aware of the extent of the expected seismic damage.

Research limitations/implications

The research applies to low- to mid-rise RC buildings within the Algerian seismic regulation, but it may also be expanded to other examples that fall under other seismic regulations.

Practical implications

The response modification ratio is a quantitative approach to assessing response fluctuations. It draws attention to how the roof level drift varies depending on the condition. These results can be used as numerical parameters in structural seismic design when the structure is comparable because they provide useful information about how the two phenomena interact with the structure.

Originality/value

The study goes beyond particular situations dealing with site specific and offers effective indicators and quantitative evaluation of combined site and SSI effects according to the current national seismic provisions, where no indication about site or SSI effects exists.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3017

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Case study
Publication date: 8 April 2024

Tarun Kumar Soni

After completion of the case study, the students will be able to understand the different risks associated with a business, focusing on price risk and the importance of price risk…

Abstract

Learning outcomes

After completion of the case study, the students will be able to understand the different risks associated with a business, focusing on price risk and the importance of price risk management in business; understand and evaluate the products available for hedging price risk through exchange-traded derivatives in the Indian scenario; and understand and evaluate the different strategies for price risk management through exchange-traded derivatives in the Indian scenario.

Case overview/synopsis

The case study pertains to a small business, M/s Sethi Jewellers. The enterprise is being run by Shri Charan Jeet Sethi and his son Tejinder Sethi. The business is located in Jain Bazar, Jammu, UT, in Northern India. The business was started in 1972 by Charan Jeet’s father. They deal in a wide range of jewelry products and are well-established jewelers known for selling quality ornaments. Tejinder (MBA in marketing) was instrumental in revamping his business recently. Under his leadership, the business has experienced rapid transformation. The business has grown from a one-room shop fully managed by Tejinder’s grandfather to a multistory showroom with several artisans, sales staff and security persons. Through his e-store, Tejinder has a bulk order from a client where the client requires him to accept the order with a small token at the current price and deliver the final product three months from now. Tejinder is in a dilemma about accepting or rejecting the large order. Second, if he accepts, should he buy the entire gold now or wait to buy it later at a lower price? He is also considering hedging the price risk through exchange-traded derivatives. However, he is not entirely sure, as he has a few apprehensions regarding the same, and he is also not fully aware of the process and the instruments he has to use for hedging the price risk on the exchange.

Complexity academic level

The case study is aimed to cater to undergraduate, postgraduate and MBA students in the field of finance. This case study can be used for students interested in commodity derivatives, risk management and market microstructure.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 1: Accounting and finance.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 2
Type: Case Study
ISSN: 2045-0621

Keywords

Open Access
Article
Publication date: 17 October 2022

Mervi Hamalainen and Asta Salmi

The purpose of this paper is to investigate two current transformation processes in the construction industry: the adoption of a novel material, cross-laminated timber (CLT), and…

1720

Abstract

Purpose

The purpose of this paper is to investigate two current transformation processes in the construction industry: the adoption of a novel material, cross-laminated timber (CLT), and the enhancement of digital transformation. This paper depicts the actors and interaction in the business network that is emerging around CLT construction and, in particular, how digital transformation (that is, the deployment of Construction 4.0 solutions) occurs in this business network.

Design/methodology/approach

Digital transformation is a relatively new phenomenon in CLT construction, and the authors, therefore, adopt a qualitative inductive research approach and rely on semi-structured interviews.

Findings

The findings of this paper suggest that it is critical for actors to adopt an interorganizational perspective in CLT construction, instead of only focusing on internal operations. An interorganizational perspective supports successful CLT construction, as well as the deployment of Construction 4.0 solutions. This will bring about the benefits of digital transformation in the construction industry.

Research limitations/implications

This paper investigates the network created around CLT construction in Finland but more generally illustrates the change toward Construction 4.0 solutions.

Practical implications

For managers, this paper explicates the importance of networking, instead of focusing on the internal development of the company, when adopting novel solutions emerging from both construction and information technology-related advancements.

Originality/value

Stability and traditions are characteristic of the construction industry. New technical solutions and materials, together with calls for sustainability, have challenged the traditional ways of constructing, and for example, the development of CLT construction has led to an emergence of new business networks. This material-related process and the ongoing digital transformation of business form an interesting context for an empirical-based analysis of changing interaction and networks. This paper gives the first insights into how digital transformation can benefit the evolution of the network.

Details

Journal of Business & Industrial Marketing, vol. 38 no. 6
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 16 May 2023

Udari Gunarathna, Chaminda Senarathna Bandara, Ranjith Dissanayake and Harsha Munasinghe

The lessons learned from the 2004 tsunami phenomenon fueled the government and other local authorities to strengthen the legitimate background to mitigate such devastation in…

Abstract

Purpose

The lessons learned from the 2004 tsunami phenomenon fueled the government and other local authorities to strengthen the legitimate background to mitigate such devastation in future events. This study aims to propose a standardized tsunami-resilient construction guideline for Sri Lanka by integrating existing local and international standards.

Design/methodology/approach

A comprehensive literature survey was carried out to undertake the study, with a wide-ranging content and thematic analysis of existing tsunami-resilient construction aspects in Sri Lanka. Integrating all existing guidelines with international standards, finally, a consolidated guideline with significant tsunami-resilient building aspects was proposed for stakeholders involved with the resilient built environment in tsunami-prone areas, particularly during the building construction in the coastal belt.

Findings

The existing tsunami-resilient guidelines in Sri Lanka follow similar aspects but in different dimensions. Compared to the international standards, few significant aspects create a gap in local guidelines. Thus, the findings demonstrated that the existing local guidelines must be modified and strengthened by mainstreaming into international practices.

Research limitations/implications

Existing guidelines are more concerned with structural aspects. Nevertheless, proper integration of local and international guidelines would be more favorable to minimizing existing local guidelines’ gaps. Further, a standardized tsunami-resilient building guideline would be a referring document for all stakeholders in tsunami-resilient constructions.

Practical implications

By aligning local guidelines with international standards, the reliability of the guidelines will be increased and direct the built environment to quality disaster-resilient constructions.

Social implications

Through a standardized guideline, the community can rely on tsunami-resilient construction in coastal cities.

Originality/value

The consolidated guideline further contains the essentials of city resilience in tsunamis and would be an excellent reference for relevant stakeholders than aligning with several guidelines.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 14 no. 4
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 13 September 2023

Arti Sahu and S. Shanmugapriya

This research proposes a viable method of slab and shore load computation for the partial striking technique utilized in high-rise construction projects to optimize the use of…

Abstract

Purpose

This research proposes a viable method of slab and shore load computation for the partial striking technique utilized in high-rise construction projects to optimize the use of horizontal formwork. The proposed Partial Striking Simplified Method (PSSM) is designed to be utilized by industry practitioners to schedule the construction operations of casting floors in order to control the formwork costs incurred throughout the completion of a project.

Design/methodology/approach

The article presents the PSSM for calculating slab and shore loads in multi-story building construction. It introduces the concept of “clearing before striking,” where shore supports are partially removed after a few days of pouring fresh concrete. The PSSM procedure is validated through numerical analysis and compared to other simplified approaches. Additionally, a user-friendly Python program based on the PSSM procedure is developed to explore the capability of the PSSM procedure and is used to study the variations in slab load, shoring level, concrete grade and cycle time.

Findings

The study successfully developed a more efficient and reliable method for estimating the loads on shores and slabs using partial striking techniques for multi-story building construction. Compared to other simplified approaches, the PSSM procedure is simpler and more precise, as demonstrated through numerical analysis. The mean of shore and slab load ratios are 1.08 and 1.07, respectively, which seems to have a slight standard deviation of 0.29 and 0.21 with 3D numerical analysis. The Python program developed for load estimation is effective in exploring the capability of the proposed PSSM procedure. The Python program's ability to identify the floor under maximum load and determine the specific construction stage provides valuable insights for multi-story construction, enabling informed decision-making and optimization of construction methods.

Practical implications

High-rise construction in Indian cities is booming, though this trend is not shared by all the country's major metropolitan areas. The growing construction sector in urban cities demands rapid construction for efficient utilization of formwork to control the construction costs of project. The proposed procedure is the best option to optimize the formwork construction cost, construction cycle time, the suitable formwork system with optimum cost, concrete grade for the adopted level of shoring in partaking and many more.

Originality/value

The proposed PSSM reduces the calculation complexity of the existing simplified method. This is done by considering the identical slab stiffness and identical shore layout for uniform load distribution throughout the structure. This procedure utilizes a two-step load distribution calculation for clearing phase. Initially, the 66% prop load of highest floor level is distributed uniformly over the lower interconnected slabs. In the second step, the total prop load is removed equally from all slabs below it. This makes the load distribution user-friendly for the industry expert.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 March 2024

Hisham Said, Aswathy Rajagopalan and Daniel M. Hall

Cross-laminated timber (CLT) is an innovative construction material that provides a balanced mix of structural stiffness, fabrication flexibility and sustainability. CLT…

Abstract

Purpose

Cross-laminated timber (CLT) is an innovative construction material that provides a balanced mix of structural stiffness, fabrication flexibility and sustainability. CLT development and innovation diffusion require close collaborations between its supply chain architectural, engineering, construction and manufacturing (AECM) stakeholders. As such, the purpose of this study is to provide a preliminary understanding of the knowledge diffusion and innovation process of CLT construction.

Design/methodology/approach

The study implemented a longitudinal social network analysis of the AECM companies involved in 100 CLT projects in the UK. The project data were acquired from an industry publication and decoded in the form of a multimode project-company network, which was projected into a single-mode company collaborative network. This complete network was filtered into a four-phase network to allow the longitudinal analysis of the CLT collaborations over time. A set of network and node social network analysis metrics was used to characterize the topology patters of the network and the centrality of the companies.

Findings

The study highlighted the scale-free structure of the CLT collaborative network that depends on the influential hubs of timber manufacturers, engineers and contractors to accelerate the innovation diffusion. However, such CLT supply collaborative network structure is more vulnerable to disruptions due to its dependence on these few prominent hubs. Also, the industry collaborative network’s decreased modularity confirms the maturity of the CLT technology and the formation of cohesive clusters of innovation partners. The macro analysis approach of the study highlighted the critical role of supply chain upstream stakeholders due to their higher centralities in the collaborative network. Stronger collaborations were found between the supply chain upstream stakeholders (timber manufacturers) and downstream stakeholders (architects and main contractors).

Originality/value

The study contributes to the field of industrialized and CLT construction by characterizing the collaborative networks between CLT supply chain stakeholders that are critical to propose governmental policies and industry initiatives to advance this sustainable construction material.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 21 June 2023

Xiaoyu Chen, Yonggang Leng, Fei Sun, Xukun Su, Shuailing Sun and Junjie Xu

The existing Nonlinear Dynamic Vibration Absorbers (NLDVAs) have the disadvantages of complex structure, high cost, high installation space requirements and difficulty in…

Abstract

Purpose

The existing Nonlinear Dynamic Vibration Absorbers (NLDVAs) have the disadvantages of complex structure, high cost, high installation space requirements and difficulty in miniaturization. And most of the NLDVAs have not been applied to reality. To address the above issues, a novel Triple-magnet Magnetic Dynamic Vibration Absorber (TMDVA) with tunable stiffness, only composed of triple cylindrical permanent magnets and an acrylic tube, is designed, modeled and tested in this paper.

Design/methodology/approach

(1) A novel TMDVA is designed. (2) Theoretical and experimental methods. (3) Equivalent dynamics model.

Findings

It is found that adjusting the magnet distance can effectively optimize the vibration reduction effect of the TMDVA under different resonance conditions. When the resonance frequency of the cantilever changes, the magnet distance of the TMDVA with a high vibration reduction effect shows an approximately linear relationship with the resonance frequency of the cantilever which is convenient for the design optimization of the TMDVA.

Originality/value

Both the simulation and experimental results prove that the TMDVA can effectively reduce the vibration of the cantilever even if the resonance frequency of the cantilever changes, which shows the strong robustness of the TMDVA. Given all that, the TMDVA has potential application value in the passive vibration reduction of engineering structures.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 47