Search results

1 – 10 of over 5000
Article
Publication date: 1 August 2016

Jian-feng Yu, Wen-Bin Tang, Yuan Li and Jie Zhang

Modeling and analysis of dimensional variation propagation is a crucial support technology for variation reduction, product/process design evaluation and recognition of variation…

Abstract

Purpose

Modeling and analysis of dimensional variation propagation is a crucial support technology for variation reduction, product/process design evaluation and recognition of variation source. However, owing to the multi-deviation (i.e. part deviations and fixture deviations) and multi-interaction (i.e. part-to-part interaction, part-to-fixture interaction and station-to-station interaction) in assembly processes, it is difficult for designers to describe or understand the variation propagation (or accumulation) mechanism clearly. The purpose of this paper is to propose a variation propagation modeling and analysis (VPMA) method based on multiple constraints aiming at a single station.

Design/methodology/approach

Initially, part-to-part constraints (PPCs) and part-to-fixture constraints (PFCs) are applied for the multi-interaction of assembly, and multiple constraints graph (MCG) model is proposed for expressing PPCs, PFCs, parts, as well as the variation propagation relation among them. Then, locating points (LPs) are adopted for representing the deviations in constraints, and formulas for calculating the deviations of LPs are derived. On that basis, a linearized relation between LPs’ deviations and part’s locating deviations is derived. Finally, a wing box is presented to validate the proposed method, and the results indicate the methodology’s feasibility.

Findings

MCG is an effective tool for dimensional VPMA, which is shown as an example of this paper.

Originality/value

Functions of geometric constraints in dimensional variation propagation are revealed, and MCG is proposed to formulize dimensional variation propagation.

Article
Publication date: 27 September 2011

Pinjun Xia, António Lopes and Maria Restivo

Haptics can significantly enhance the user's sense of immersion and interactivity. Especially in an assembly task, haptic feedback can help designers to have a better…

Abstract

Purpose

Haptics can significantly enhance the user's sense of immersion and interactivity. Especially in an assembly task, haptic feedback can help designers to have a better understanding of virtual objects and to increase task efficiency. The purpose of this paper is to investigate the design and implementation of a haptic‐based virtual assembly system (HVAS).

Design/methodology/approach

A multi‐thread system structure was designed, an automatic data integration interface was developed to transfer geometry, topology, assembly and physics information from a computer‐aided design system to virtual reality application, and a hierarchical constraint‐based data model and scene graph structure was designed to construct the virtual assembly environment. Unlike traditional virtual assembly systems based on collision detection or geometry constraint only, a physics‐based modeling approach combining with haptic feedback and geometry constraint was undertaken to realize and guide the realistic assembly process. When two parts collide into each other, the force and torque can be computed and provide feedback, and a spring‐mass model is used to prevent penetration and simulate dynamic behaviour. When two parts are close enough to each other and the assembly simulation state is activated, a geometry constraint can be captured, an attractive force can be generated to guide the user to assemble the part along the correct position, and the repulsive force can also be generated to realize the mating process as natural and realistic as in real life.

Findings

The implementation details and application examples demonstrate that haptic‐based virtual assembly is a valuable tool for assembly design and process planning.

Originality/value

The paper presents an HVAS.

Details

Assembly Automation, vol. 31 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 June 2019

Yifan Jiang, Xiang Huang, Shuanggao Li and Zhengping Deng

The purpose of this paper is to propose an assembly coordination modelling approach based on measured data for assembly quality control of multi-constrained objects in aircraft…

Abstract

Purpose

The purpose of this paper is to propose an assembly coordination modelling approach based on measured data for assembly quality control of multi-constrained objects in aircraft assembly. This approach aims to establish a high-precision digital mirror of physical assembly system in the virtual environment, with which the assembly process in the virtual environment can be performed synchronously with that in the physical world.

Design/methodology/approach

This paper presents a realistic geometrical representation model based on measured point cloud, as well as the multiple constraints modelling methods for local and global constraints with the proposed representation model. For the assembly target optimization, a novel optimization method based on the evaluation of multi-dimensional tolerance zone is proposed, where the particle swarm optimization and simulated annealing algorithm are combined to calculate the optimal solutions.

Findings

As shown in the validation results, the minimum easiness value for easiness model in global optimization is 3.01, while the best value for weighting model by adjusting weights for more than 10 times is 1.94. The results verify that the proposed coordination modelling approach is effective to the assembly of multi-constrained objects, and the optimization model has an obvious advantage over the traditional weighting method.

Originality/value

This paper provides a new idea for the fine control of assembly quality of non-ideal components by introducing the measured data into the on-line assembly process. Besides, a novel optimization method based on the evaluation of multi-dimensional tolerance zone is proposed, which overcomes the problem of traditional weighting model wherein the weightings are difficult to determine.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 May 2019

Wenwu Han, Qianwang Deng, Wenhui Lin, Xuran Gong and Sun Ding

This study aims to present a model and analysis of automotive body outer cover panels (OCPs) assembly systems to predict assembly variation. In the automotive industry, the OCPs…

Abstract

Purpose

This study aims to present a model and analysis of automotive body outer cover panels (OCPs) assembly systems to predict assembly variation. In the automotive industry, the OCPs assembly process directly influences the quality of the automobile body appearance. However, suitable models to describe variation propagation of OCPs assembly systems remain unknown.

Design/methodology/approach

An adaptive state space model for OCPs assembly systems is introduced to accurately express variation propagation, including variation accumulation and transition, where two compliant deviations make impacts on key product characteristics (KPCs) of OCP, and the impacts are accumulated from welding process to threaded connection process. Another new source of variation from threaded connection is included in this model. To quantify the influence of variation from threaded connection on variation propagation, the threaded connection sensitivity matrix is introduced to build up a linear relationship between deviation from threaded connection and output deviation in KPCs. This matrix is solved by homogeneous coordinate transformation. The final deviation of KPCs will be transferred to ensure gaps and flushes between two OCPs, and the transition matrix is considered as a unit matrix to build up the transition relationship between different states.

Findings

A practical case on the left side body structure is described, where simulation result of variation propagation reveals the basic rule of variation propagation and the significant effect of variation from threaded connection on variation propagation of OCPs assembly system.

Originality/value

The model can be used to predict assembly variation or potential dimension problems at a preliminary assembly phase. The calculated results of assembly variation guide designers or technicians on tolerance allocation, fixture layout design and process planning.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 November 2015

Keng Hoon Gan and Keat Keong Phang

This paper aims to focus on automatic selection of two important structural concepts required in an XML query, namely, target and constraint concepts, when given a keywords query…

Abstract

Purpose

This paper aims to focus on automatic selection of two important structural concepts required in an XML query, namely, target and constraint concepts, when given a keywords query. Due to the diversities of concepts used in XML resources, it is not easy to select a correct concept when constructing an XML query.

Design/methodology/approach

In this paper, a Context-based Term Weighting model that performs term weighting based on part of documents. Each part represents a specific context, thus offering better capturing of concept and term relationship. For query time analysis, a Query Context Graph and two algorithms, namely, Select Target and Constraint (QC) and Select Target and Constraint (QCAS) are proposed to find the concepts for constructing XML query.

Findings

Evaluations were performed using structured document for conference domain. For constraint concept selection, the approach CTX+TW achieved better result than its baseline, NCTX, when search term has ambiguous meanings by using context-based scoring for the concepts. CTX+TW also shows its stability on various scoring models like BM25, TFIEF and LM. For target concept selection, CTX+TW outperforms the standard baseline, SLCA, whereas it also records higher coverage than FCA, when structural keywords are used in query.

Originality/value

The idea behind this approach is to capture the concepts required for term interpretation based on parts of the collections rather than the entire collection. This allows better selection of concepts, especially when a structured XML document consists many different types of information.

Details

International Journal of Web Information Systems, vol. 11 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 1 May 2019

Haoyao Chen, Hailin Huang, Ye Qin, Yanjie Li and Yunhui Liu

Multi-robot laser-based simultaneous localization and mapping (SLAM) in large-scale environments is an essential but challenging issue in mobile robotics, especially in situations…

Abstract

Purpose

Multi-robot laser-based simultaneous localization and mapping (SLAM) in large-scale environments is an essential but challenging issue in mobile robotics, especially in situations wherein no prior knowledge is available between robots. Moreover, the cumulative errors of every individual robot exert a serious negative effect on loop detection and map fusion. To address these problems, this paper aims to propose an efficient approach that combines laser and vision measurements.

Design/methodology/approach

A multi-robot visual laser-SLAM is developed to realize robust and efficient SLAM in large-scale environments; both vision and laser loop detections are integrated to detect robust loops. A method based on oriented brief (ORB) feature detection and bag of words (BoW) is developed, to ensure the robustness and computational effectiveness of the multi-robot SLAM system. A robust and efficient graph fusion algorithm is proposed to merge pose graphs from different robots.

Findings

The proposed method can detect loops more quickly and accurately than the laser-only SLAM, and it can fuse the submaps of each single robot to promote the efficiency, accuracy and robustness of the system.

Originality/value

Compared with the state of art of multi-robot SLAM approaches, the paper proposed a novel and more sophisticated approach. The vision-based and laser-based loops are integrated to realize a robust loop detection. The ORB features and BoW technologies are further utilized to gain real-time performance. Finally, random sample consensus and least-square methodologies are used to remove the outlier loops among robots.

Details

Assembly Automation, vol. 39 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 25 January 2024

Lin Kang, Jie Wang, Junjie Chen and Di Yang

Since the performance of vehicular users and cellular users (CUE) in Vehicular networks is highly affected by the allocated resources to them. The purpose of this paper is to…

Abstract

Purpose

Since the performance of vehicular users and cellular users (CUE) in Vehicular networks is highly affected by the allocated resources to them. The purpose of this paper is to investigate the resource allocation for vehicular communications when multiple V2V links and a V2I link share spectrum with CUE in uplink communication under different Quality of Service (QoS).

Design/methodology/approach

An optimization model to maximize the V2I capacity is established based on slowly varying large-scale fading channel information. Multiple V2V links are clustered based on sparrow search algorithm (SSA) to reduce interference. Then, a weighted tripartite graph is constructed by jointly optimizing the power of CUE, V2I and V2V clusters. Finally, spectrum resources are allocated based on a weighted 3D matching algorithm.

Findings

The performance of the proposed algorithm is tested. Simulation results show that the proposed algorithm can maximize the channel capacity of V2I while ensuring the reliability of V2V and the quality of service of CUE.

Originality/value

There is a lack of research on resource allocation algorithms of CUE, V2I and multiple V2V in different QoS. To solve the problem, one new resource allocation algorithm is proposed in this paper. Firstly, multiple V2V links are clustered using SSA to reduce interference. Secondly, the power allocation of CUE, V2I and V2V is jointly optimized. Finally, the weighted 3D matching algorithm is used to allocate spectrum resources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Book part
Publication date: 25 July 2008

Ronald S. Burt

What is the scope of brokerage network to be considered in thinking strategically? Given the value of bridging structural holes, is there value to being affiliated with people or…

Abstract

What is the scope of brokerage network to be considered in thinking strategically? Given the value of bridging structural holes, is there value to being affiliated with people or organizations that bridge structural holes? The answer is “no” according to performance associations with manager networks, which raises a question about the consistency of network theory across micro to macro levels of analysis. The purpose here is to align manager evidence with corresponding macro evidence on the supplier and customer networks around four-digit manufacturing industries in the 1987 and 1992 benchmark input–output tables. In contrast to the manager evidence, about 24% of the industry-structure effect on industry performance can be attributed to structure beyond the industry's own buying and selling, to networks around the industry's suppliers and customers. However, the industry evidence is not qualitatively distinct from the manager evidence so much as it describes a more extreme business environment.

Details

Network Strategy
Type: Book
ISBN: 978-0-7623-1442-3

Article
Publication date: 28 October 2014

Yuzhong Chen, Yang Yu and Guolong Chen

Shortest distance query between a pair of nodes in a graph is a classical problem with a wide variety of applications. Exact methods for this problem are infeasible for…

Abstract

Purpose

Shortest distance query between a pair of nodes in a graph is a classical problem with a wide variety of applications. Exact methods for this problem are infeasible for large-scale graphs such as social networks with hundreds of millions of users and links due to their high complexity of time and space. The purpose of this paper is to propose a novel landmark selection strategy which can estimate the shortest distances in large-scale graphs and clarify the efficiency and accuracy of the proposed strategy in comparison with currently used strategies.

Design/methodology/approach

Different from existing strategies, the landmark selection problem is regarded as a binary combinational optimization problem consisting of two optimization objectives and one constraint. Further, the original binary combinational optimization problem with constraints is transformed to a proper form of optimization objectives without any additional constraints and the equivalence of solutions is proved. Finally the solution of the optimization problem is performed with a modified multi-objective particle swarm optimization (MOPSO) integrating the mutation operator and crossover operator of genetic algorithm.

Findings

Four real networks of large scale are used as data sets to carry out the experiments and the experiment results show that the proposed strategy improves both of the accuracy and time efficiency to perform shortest distance estimation in large scale graph compared to other currently used strategies.

Originality/value

This paper proposes a novel landmark selection strategy which regards the landmark selection problem as a binary combinational optimization problem. The original binary combinational optimization problem with constraints is transformed to a proper form of optimization objectives without constraints and the equivalence of these two optimization problems is proved. This novel strategy also utilizes a modified MOPSO integrating the mutation operator and crossover operator of genetic algorithm.

Details

Engineering Computations, vol. 31 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 January 2012

Iftikhar H. Makhdoom and Qin Shi‐Yin

The purpose of this paper is to propose a new algorithm for in‐mission trajectories and speed adjustment of multiple unmanned aerial vehicles (UAVs) participating in a mission…

Abstract

Purpose

The purpose of this paper is to propose a new algorithm for in‐mission trajectories and speed adjustment of multiple unmanned aerial vehicles (UAVs) participating in a mission that requires them to arrive at target location simultaneously with switching and imperfect communication among the vehicles.

Design/methodology/approach

This algorithm, programmed at each UAV level, is based on the repeated consensus seeking among the participating vehicles about the time‐on‐target (ToT) through an imperfect inter‐vehicle communication link. The vehicles exchange their individual ToT values repeatedly for a particular duration to pick the highest value among all the vehicles in communication. A consensus confidence flag is set high when consensus is successful. After every consensus cycle with high confidence value, the mission adjustment is carried out by computing difference value between ToT consensus and a threshold value. For the difference values higher than a certain limit, vehicle's trajectory is adjusted by in‐mission insertion of new waypoint (WP) and for lower values the vehicle's speed is varied under allowable limits. The consensus seeking followed by the mission adjustment is repeated periodically to quash the imperfect communication effects.

Findings

A mathematical analysis has been carried out to establish the conditions for convergence of the algorithm. The simultaneous arrival of the vehicles subjected to switching communication is achieved only when the union of the switching links during the consensus period enables a vehicle to receive information from all the other vehicles and the switching rate is sufficiently high. This algorithm has been tested in a 6‐degree‐of‐freedom (DoF) multiple UAV simulation environment and achieves simultaneous arrival of multiple fixed wing UAVs under imperfect communication links that meets the aforementioned conditions.

Research limitations/implications

The presented algorithm and design strategy can be extended for other types of cooperative control missions where certain variable of interest is shared among all the vehicles over imperfect communication environment. The design is modular in functionality and can be incorporated into existing vehicles or simulations.

Originality/value

This research presents a new consensus algorithm that repeatedly performs polling of ToT among the vehicles through intermittent communication. The continual nature of consensus seeking covers the weakness of the imperfect communication. A two‐level mission adjustment provides better accuracy in simultaneous arrival at the target location.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 5000