Search results

1 – 3 of 3
Article
Publication date: 23 April 2020

Ashraf M. Zenkour

The thermo-diffusion analysis of an isotropic cylinder under thermal flux and chemical potential impacts has been discussed. Improvements of Green and Naghdi generalized…

77

Abstract

Purpose

The thermo-diffusion analysis of an isotropic cylinder under thermal flux and chemical potential impacts has been discussed. Improvements of Green and Naghdi generalized thermoelasticity theory have been proposed.

Design/methodology/approach

Some models with and without energy dissipation have been presented as well as the simple forms of Green–Naghdi (G–N) theories. These novel multi- and single-/dual-phase-lag models are presented to investigate the thermo-diffusion of the solid cylinder. The closed-form solution of thermo-diffusion governing equations of solid cylinder has been obtained to deduce all field variables.

Findings

A comparison study between the simple G–N II and III models and their improved models has been presented. The validations of outcomes are acceptable and so benchmarks are reported to help other investigators in their future comparisons.

Originality/value

The modified Green and Naghdi theories of types II and III are presented to get novel and accurate models of single- and dual-phase-lag of multiterms. The heat of mass diffusion equation as well as the constitutive equations for the stresses and chemical potential of a solid cylinder is added to the present formulation. The system of three differential coupled equations is solved, and all field variables are obtained for the thermal diffusion of the solid cylinder. Some validation examples and applications are presented to compare the simple and modified Green and Naghdi theories of types II and III. Sample plots are illustrated along the radial direction of the solid cylinder. Some results are tabulated to serve as benchmark results for future comparisons with other investigators. The reported and illustrated results show that the simple G–N II and III models yield the largest values of all field quantities. The single-phase-lag models give the smallest values. However, the dual-phase-lag model yields results that are intermediate between those of the simple and single-phase-lag G–N models.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 July 2023

Rachaita Dutta, Soumik Das, Shishir Gupta, Aditi Singh and Harsh Chaudhary

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids…

Abstract

Purpose

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids (FRDPTDMWV) in light of the fractional-order Lord–Shulman thermo-elasto-diffusion (LSTED) model. By virtue of Eringen’s nonlocal elasticity theory, the governing equations for the considered material are developed. The free surface of the substrate is governed by the inclined mechanical load and thermal and chemical shocks.

Design/methodology/approach

With the aid of the normal mode technique, the solutions of the nondimensional coupled governing equations have been obtained.

Findings

The expressions of field variables are obtained analytically. By using MATHEMATICA software, various graphical implementations are presented to describe the impacts of angle of inclination, fractional-order and nonlocality parameters. The present model is also validated on the basis of some comparative studies with some preestablished cases.

Originality/value

As observed from the literature survey, many different studies have been carried out by taking into account the deformation analysis in nonlocal double porous thermoelastic material structures and thermo-mechanical interaction in fiber-reinforced medium under fractional-order thermoelasticity theories. However, to the best of the authors’ knowledge, no research emphasizing the thermo-elasto-diffusive interactions in a nonlocal FRDPTDMWV has been carried out. Moreover, the effect of fractional-order LSTED theory on fiber-reinforced thermoelastic diffusive half-space with double porosity has not been illuminated till now, which significantly defines the novelty of the conducted research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 January 2023

Devender Sheoran, Komal Yadav, Baljit Singh Punia and Kapil Kumar Kalkal

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE…

Abstract

Purpose

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE theories: Lord–Shulman (LS) and Green–Lindsay (GL). The governing equations are derived in rectangular Cartesian coordinates for a two dimensional problem.

Design/methodology/approach

All the physical properties of the semiconductor are supposed to vary exponentially with distance. The analytical solution is procured by employing normal mode technique on the resulting non-dimensional coupled field equations with appropriate boundary conditions.

Findings

For the mechanically loaded thermally insulated surface, normal displacement, stress components, temperature distribution and carrier density are calculated numerically with the help of MATLAB software for a silicon semiconductor and displayed graphically. Some particular cases of interest have also been deduced from the present results.

Originality/value

The effects of rotation and non-homogeneity on the different physical fields are investigated on the basis of analytical and numerical results. Comparisons are made with the results predicted by GL theory in the presence and absence of gravity for different values of time. Comparisons are also made between the three theories in the presence of rotation, gravity and in-homogeneity. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 3 of 3