Search results

1 – 10 of 135
Open Access
Article
Publication date: 15 March 2018

Moufida Maimour

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of…

313

Abstract

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of interference that can significantly affect the expected performances. We focus on the performance evaluation of the iterative paths discovery approach as opposed to the traditional concurrent multipath routing. Five different variants of multipath protocols are simulated and evaluated using different performance metrics. We mainly show that the iterative approach allows better performances when used jointly with an interference-aware metric or when an interference-zone marking strategy is employed. This latter appears to exhibit the best performances in terms of success ratio, achieved throughput, control messages overhead as well as energy consumption.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 6 November 2017

Ishu Sharma and K.R. Ramkumar

The purpose of this paper is to review the existing routing algorithms for wireless ad hoc networks to evaluate the methods according to the current requirements. Wireless ad hoc…

Abstract

Purpose

The purpose of this paper is to review the existing routing algorithms for wireless ad hoc networks to evaluate the methods according to the current requirements. Wireless ad hoc network can provide communication in emergency situations. Active nodes in ad hoc network work as sender, receiver and router at the same time. Nodes are equipped with limited bandwidth and energy. Optimal routing method can help in “smart use” of available resources. Evolvement of routing method based on need is a continuous process. Numerous applications of ad hoc network motivates researcher for further development to fulfill the need of society.

Design/methodology/approach

In this paper, routing algorithms for ad hoc network based on ant colony optimization, multipath routing and with multiple input multiple output (MIMO) antenna support have been discussed.

Findings

Comparative analysis has been drawn among existing algorithms of different categories. Transmitting message packets parallel through multiple paths in the network can save overall resource usage in the network.

Originality/value

The authors have discussed the future area of development for optimal routing in ad hoc networks. Considering signal noise ratio and congestion status while selecting path can provide better energy use in the network. Rather than leaving less prioritized route paths, multiple paths can be used for sending data packets parallel.

Details

International Journal of Pervasive Computing and Communications, vol. 13 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 7 November 2016

Yahya M. Tashtoush, Mohammad A. Alsmirat and Tasneem Alghadi

The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad…

Abstract

Purpose

The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP).

Design/methodology/approach

GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area.

Findings

The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent.

Originality/value

This study is the first to propose to use of geometric sequence in the multipath routing approach.

Details

International Journal of Pervasive Computing and Communications, vol. 12 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 5 April 2011

Christos Grecos and Qi Wang

The interdisciplinary nature of video networking, coupled with various recent developments in standards, proposals and applications, poses great challenges to the research and…

Abstract

Purpose

The interdisciplinary nature of video networking, coupled with various recent developments in standards, proposals and applications, poses great challenges to the research and industrial communities working in this area. The main purpose of this paper is to provide a tutorial and survey on recent advances in video networking from an integrated perspective of both video signal processing and networking.

Design/methodology/approach

Detailed technical descriptions and insightful analysis are presented for recent and emerging video coding standards, in particular the H.264 family. The applications of selected video coding standards in emerging wireless networks are then introduced with an emphasis on scalable video streaming in multihomed mobile networks. Both research challenges and potential solutions are discussed along the description, and numerical results through simulations or experiments are provided to reveal the performances of selected coding standards and networking algorithms.

Findings

The tutorial helps to clarify the similarities and differences among the considered standards and networking applications. A number of research trends and challenges are identified, and selected promising solutions are discussed. This practice would provoke further thoughts on the development of this area and open up more research and application opportunities.

Research limitations/implications

Not all the concerned video coding standards are complemented with thorough studies of networking application scenarios.

Practical implications

The discussed video coding standards are either playing or going to play indispensable roles in the video industry; the introduced networking scenarios bring together these standards and various emerging wireless networking paradigms towards innovative application scenarios.

Originality/value

The comprehensive overview and critiques on existing standards and application approaches offer a valuable reference for researchers and system developers in related research and industrial communities.

Details

International Journal of Pervasive Computing and Communications, vol. 7 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 October 2022

Nidhi Sharma and Ravindara Bhatt

Privacy preservation is a significant concern in Internet of Things (IoT)-enabled event-driven wireless sensor networks (WSNs). Low energy utilization in the event-driven system…

Abstract

Purpose

Privacy preservation is a significant concern in Internet of Things (IoT)-enabled event-driven wireless sensor networks (WSNs). Low energy utilization in the event-driven system is essential if events do not happen. When events occur, IoT-enabled sensor network is required to deal with enormous traffic from the concentration of demand data delivery. This paper aims to explore an effective framework for safeguarding privacy at source in event-driven WSNs.

Design/methodology/approach

This paper discusses three algorithms in IoT-enabled event-driven WSNs: source location privacy for event detection (SLP_ED), chessboard alteration pattern (SLP_ED_CBA) and grid-based source location privacy (GB_SLP). Performance evaluation is done using simulation results and security analysis of the proposed scheme.

Findings

The sensors observe bound events or sensitive items within the network area in the field of interest. The open wireless channel lets an opponent search traffic designs, trace back and reach the start node or the event-detecting node. SLP_ED and SLP_ED_CBA provide better safety level results than dynamic shortest path scheme and energy-efficient source location privacy protection schemes. This paper discusses security analysis for the GB_SLP. Comparative analysis shows that the proposed scheme is more efficient on safety level than existing techniques.

Originality/value

The authors develop the privacy protection scheme in IoT-enabled event-driven WSNs. There are two categories of occurrences: nominal events and critical events. The choice of the route from source to sink relies on the two types of events: nominal or critical; the privacy level required for an event; and the energy consumption needed for the event. In addition, phantom node selection scheme is designed for source location privacy.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 February 2022

Hingmire Vishal Sharad, Santosh R. Desai and Kanse Yuvraj Krishnrao

In a wireless sensor network (WSN), the sensor nodes are distributed in the network, and in general, they are linked through wireless intermediate to assemble physical data. The…

Abstract

Purpose

In a wireless sensor network (WSN), the sensor nodes are distributed in the network, and in general, they are linked through wireless intermediate to assemble physical data. The nodes drop their energy after a specific duration because they are battery-powered, which also reduces network lifetime. In addition, the routing process and cluster head (CH) selection process is the most significant one in WSN. Enhancing network lifetime through balancing path reliability is more challenging in WSN. This paper aims to devise a multihop routing technique with developed IIWEHO technique.

Design/methodology/approach

In this method, WSN nodes are simulated originally, and it is fed to the clustering process. Meanwhile, the CH is selected with low energy-based adaptive clustering model with hierarchy (LEACH) model. After CH selection, multipath routing is performed by developed improved invasive weed-based elephant herd optimization (IIWEHO) algorithm. In addition, the multipath routing is selected based on certain fitness functions like delay, energy, link quality and distance. However, the developed IIWEHO technique is the combination of IIWO method and EHO algorithm.

Findings

The performance of developed optimization method is estimated with different metrics, like distance, energy, delay and throughput and achieved improved performance for the proposed method.

Originality/value

This paper presents an effectual multihop routing method, named IIWEHO technique in WSN. The developed IIWEHO algorithm is newly devised by incorporating EHO and IIWO approaches. The fitness measures, which include intra- and inter-distance, delay, link quality, delay and consumption of energy, are considered in this model. The proposed model simulates the WSN nodes, and CH selection is done by the LEACH protocol. The suitable CH is chosen for transmitting data through base station from the source to destination. Here, the routing system is devised by a developed optimization technique. The selection of multipath routing is carried out using the developed IIWEHO technique. The developed optimization approach selects the multipath depending on various multi-objective functions.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 14 May 2020

Nabeena Ameen, Najumnissa Jamal and Arun Raj

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but…

Abstract

Purpose

With the rapid growth of wireless sensor networks (WSNs), they have become an integral and substantial part of people's life. As such WSN stands as an assuring outlook, but because of sensor's resource limitations and other prerequisites, optimal dual route discovery becomes an issue of concern. WSN along with central sink node is capable of handling wireless transmission, thus optimizing the network's lifetime by selecting the dual path. The major problem confronted in the application of security mechanisms in WSNs is resolving the issues amid reducing consumption of resources and increases security.

Design/methodology/approach

According to the proposed system, two metrics, namely, path length and packets delivery ratio are incorporated for identifying dual routes amid the source and destination. Thereafter by making use of the distance metric, the optimal dual route is chosen and data transmission is carried out amid the nodes. With the usage of the recommended routing protocol high packet delivery ratio is achieved with reduced routing overhead and low average end to end delay. It is clearly portrayed in the simulation output that the proposed on demand dual path routing protocol surpasses the prevailing routing protocol. Moreover, security is achieved make use of in accord the data compression reduces the size of the data. With the help of dual path, mathematical model of Finite Automata Theory is derived to transmit data from source to destination. Finite Automata Theory comprises Deterministic Finite Automata (DFA) that is being utilized for Dual Path Selection. In addition, data transition functions are defined for each input stage. In this proposed work, another mathematical model is 10; introduced to efficiently choose an alternate path between a receiver and transmitter for data transfer with qualified node as relay node using RR Algorithm. It also includes Dynamic Mathematical Model for Node Localization to improve the precision in location estimation using Node Localization Algorithm. As a result a simulator is built and various scenarios are elaborated for comparing the performance of the recommended dual path routing protocol with respect to the prevailing ones.

Findings

Reliability and fault-tolerance: The actual motive in utilizing the approach of multipath routing in sensor network was to offer path resilience in case of a node or link failures thus ascertaining reliable transmission of data. Usually in a fault tolerant domain, when the sensor node is unable to forward the data packets to the sink, alternative paths can be utilized for recovering its data packets during the failure of any link/node. Load balancing: Load balancing involves equalizing energy consumption of all the existing nodes, thereby degrading them together. Load balancing via clustering improves network scalability. The network's lifetime as well as reliability can be extended if varied energy level's nodes exist in sensor node. Quality of service (QoS): Improvement backing of quality of service with respect to the data delivery ratio, network throughput and end-to-end latency stands very significant in building multipath routing protocols for various network types. Reduced delay: There is a reduced delay in multipath routing since the backup routes are determined at the time of route discovery. Bandwidth aggregation: By dividing the data toward the same destination into multiple streams (by routing all to a separate path) can aggregate the effective bandwidth. The benefit being that, in case a node possesses many links with low bandwidth, it can acquire a bandwidth which is more compared to the individual link.

Research limitations/implications

Few more new algorithms can be used to compare the QoS parameters.

Practical implications

Proposed mechanism with feedback ascertains improvised delivery ratio compared to the single path protocol since in case of link failure, the protocol has alternative route. In case there are 50 nodes in the network, the detection mechanism yields packet delivery of 95% and in case there are 100 nodes, the packet delivery is lowered to 89%. It is observed that the packet rate in the network is more for small node range. When the node count is 200, the packet ratio is low, which is lowered to 85%. With a node count of 400, the curve depicts the value of 87%. Hence, even with a decrease in value, it is superior than the existing protocols. The average end-to-end delay represents the transmission delay of the data packets that have been successfully delivered as depicted in Figure 6 and Table 3. The recommended system presents the queue as well as the propagation delay from the source to destination. The figure depicts that when compared to the single path protocol, the end-to-end delay can be reduced via route switching. End-to-end delay signifies the time acquired for the delay in the receival of the the retransmitted packet by each node. The comparison reveals that the delay was lower compared to the existing ones in the WSN. Proposed protocol aids in reducing consumption of energy in transmitter, receiver and various sensors. Comparative analysis of energy consumptions of the sensor in regard to the recommended system must exhibit reduced energy than the prevailing systems.

Originality/value

On demand dual path routing protocol. Hence it is verified that the on demand routing protocol comprises DFA algorithms determines dual path. Here mathematical model for routing between two nodes with relay node is derived using RR algorithm to determine alternate path and thus reduce energy consumption. Another dynamic mathematical model for node localization is derived using localization algorithm. For transmitting data with a secure and promising QoS in the WSNs, the routing optimization technique has been introduced. The simulation software environment follows the DFA. The simulation yields in improvised performance with respect to packet delivery ratio, throughput, average end-to-end delay and routing overhead. So, it is proved that the DFA possesses the capability of optimizing the routing algorithms which facilitates the multimedia applications over WSNs.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 August 2018

Rama Rao A., Satyananda Reddy and Valli Kumari V.

Multimedia applications such as digital audio and video have stringent quality of service (QoS) requirement in mobile ad hoc network. To support wide range of QoS, complex routing

Abstract

Purpose

Multimedia applications such as digital audio and video have stringent quality of service (QoS) requirement in mobile ad hoc network. To support wide range of QoS, complex routing protocols with multiple QoS constraints are necessary. In QoS routing, the basic problem is to find a path that satisfies multiple QoS constraints. Moreover, mobility, congestion and packet loss in dynamic topology of network also leads to QoS performance degradation of protocol.

Design/methodology/approach

In this paper, the authors proposed a multi-path selection scheme for QoS aware routing in mobile ad hoc network based on fractional cuckoo search algorithm (FCS-MQARP). Here, multiple QoS constraints energy, link life time, distance and delay are considered for path selection.

Findings

The experimentation of proposed FCS-MQARP is performed over existing QoS aware routing protocols AOMDV, MMQARP, CS-MQARP using measures such as normalized delay, energy and throughput. The extensive simulation study of the proposed FCS-based multipath selection shows that the proposed QoS aware routing protocol performs better than the existing routing protocol with maximal energy of 99.1501 and minimal delay of 0.0554.

Originality/value

This paper presents a hybrid optimization algorithm called the FCS algorithm for the multi-path selection. Also, a new fitness function is developed by considering the QoS constraints such as energy, link life time, distance and delay.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 April 2022

Elham Kariri and Kusum Yadav

In the final step, the trust model is applied to the on-demand federated multipath distance vector routing protocol (AOMDV) to introduce path trust as a foundation for routing

Abstract

Purpose

In the final step, the trust model is applied to the on-demand federated multipath distance vector routing protocol (AOMDV) to introduce path trust as a foundation for routing selection in the route discovery phase, construct a trusted path, and implement a path warning mechanism to detect malicious nodes in the route maintenance phase, respectively.

Design/methodology/approach

A trust-based on-demand multipath distance vector routing protocol is being developed to address the problem of flying ad-hoc network being subjected to internal attacks and experiencing frequent connection interruptions. Following the construction of the node trust assessment model and the presentation of trust evaluation criteria, the data packet forwarding rate, trusted interaction degree and detection packet receipt rate are discussed. In the next step, the direct trust degree of the adaptive fuzzy trust aggregation network compute node is constructed. After then, rely on the indirect trust degree of neighbouring nodes to calculate the trust degree of the node in the network. Design a trust fluctuation penalty mechanism, as a second step, to defend against the switch attack in the trust model.

Findings

When compared to the lightweight trust-enhanced routing protocol (TEAOMDV), it significantly improves the data packet delivery rate and throughput of the network significantly.

Originality/value

Additionally, it reduces the amount of routing overhead and the average end-to-end delay.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 September 2017

Shailja Agnihotri and K.R. Ramkumar

The purpose of this paper is to provide insight into various swarm intelligence-based routing protocols for Internet of Things (IoT), which are currently available for the Mobile…

519

Abstract

Purpose

The purpose of this paper is to provide insight into various swarm intelligence-based routing protocols for Internet of Things (IoT), which are currently available for the Mobile Ad-hoc networks (MANETs) and wireless sensor networks (WSNs). There are several issues which are limiting the growth of IoT. These include privacy, security, reliability, link failures, routing, heterogeneity, etc. The routing issues of MANETs and WSNs impose almost the same requirements for IoT routing mechanism. The recent work of worldwide researchers is focused on this area.

Design/methodology/approach

The paper provides the literature review for various standard routing protocols. The different comparative analysis of the routing protocols is done. The paper surveys various routing protocols available for the seamless connectivity of things in IoT. Various features, advantages and challenges of the said protocols are discussed. The protocols are based on the principles of swarm intelligence. Swarm intelligence is applied to achieve optimality and efficiency in solving the complex, multi-hop and dynamic requirements of the wireless networks. The application of the ant colony optimization technique tries to provide answers to many routing issues.

Findings

Using the swarm intelligence and ant colony optimization principles, it has been seen that the protocols’ efficiency definitely increases and also provides more scope for the development of more robust, reliable and efficient routing protocols for the IoT.

Research limitations/implications

The existing protocols do not solve all reliability issues and efficient routing is still not achieved completely. As of now no techniques or protocols are efficient enough to cover all the issues and provide the solution. There is a need to develop new protocols for the communication which will cater to all these needs. Efficient and scalable routing protocols adaptable to different scenarios and network size variation capable to find optimal routes are required.

Practical implications

The various routing protocols are discussed and there is also an introduction to new parameters which can strengthen the protocols. This can lead to encouragement of readers, as well as researchers, to analyze and develop new routing algorithms.

Social implications

The paper provides better understanding of the various routing protocols and provides better comparative analysis for the use of swarm-based research methodology in the development of routing algorithms exclusively for the IoT.

Originality/value

This is a review paper which discusses the various routing protocols available for MANETs and WSNs and provides the groundwork for the development of new intelligent routing protocols for IoT.

Details

International Journal of Pervasive Computing and Communications, vol. 13 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 135