Search results

1 – 10 of 78
Article
Publication date: 30 August 2022

Dorcas Kaweesa, Lourdes Bobbio, Allison M. Beese and Nicholas Alexander Meisel

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates…

Abstract

Purpose

This study aims to investigate the tensile strength and elastic modulus of custom-designed polymer composites developed using voxel-based design. This study also evaluates theoretical models, such as the rule of mixtures, Halpin–Tsai model, Cox–Krenchel model and the Young–Beaumont model and the ability to predict the mechanical properties of particle-reinforced composites based on changes in the design of rigid particles at the microscale within a flexible polymer matrix.

Design/methodology/approach

This study leverages the PolyJet process for voxel-printing capabilities and a design of experiments approach to define the microstructural design elements (i.e. aspect ratio, orientation, size and volume fraction) used to create custom-designed composites.

Findings

The comparison between the predictions and experimental results helps identify appropriate methods for determining the mechanical properties of custom-designed composites ensuring informed design decisions for improved mechanical properties.

Originality/value

This work centers on multimaterial additive manufacturing leveraging design freedom and material complexity to create a wide range of composite materials. This study highlights the importance of identifying the process, structure and property relationships in material design.

Article
Publication date: 27 September 2022

Taylor Davis, Tracy W. Nelson and Nathan B. Crane

dding dopants to a powder bed could be a cost-effective method for spatially varying the material properties in laser powder bed fusion (LPBF) or for evaluating new materials and…

Abstract

Purpose

dding dopants to a powder bed could be a cost-effective method for spatially varying the material properties in laser powder bed fusion (LPBF) or for evaluating new materials and processing relationships. However, these additions may impact the selection of processing parameters. Furthermore, these impacts may be different when depositing nanoparticles into the powder bed than when the same composition is incorporated into the powder particles as by ball milling of powders or mixing similarly sized powders. This study aims to measure the changes in the single bead characteristics with laser power, laser scan speed, laser spot size and quantity of zirconia nanoparticle dopant added to SS 316 L powder.

Design/methodology/approach

A zirconia slurry was inkjet-printed into a single layer of 316 SS powder and dried. Single bead experiments were conducted on the composite powder. The line type (continuous vs balling) and the melt pool geometry were compared at various levels of zirconia doping.

Findings

The balling regime expands dramatically with the zirconia dopant to both higher and lower energy density values indicating the presence of multiple physical mechanisms that influence the resulting melt track morphology. However, the energy density required for continuous tracks was not impacted as significantly by zirconia addition. These results suggest that the addition of dopants may alter the process parameter ranges suitable for the fabrication of high-quality parts.

Originality/value

This work provides new insight into the potential impact of material doping on the ranges of energy density values that form continuous lines in single bead tests. It also illustrates a potential method for spatially varying material composition for process development or even part optimization in powder bed fusion without producing a mixed powder that cannot be recycled.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 15 March 2022

Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…

6563

Abstract

Purpose

This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of “multimaterial PBF techniques” is still very new, undeveloped, and of interest to academia and industry on many levels.

Design/methodology/approach

This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.

Findings

The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental “research” questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.

Originality/value

This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 August 2023

Kyle Engel, Paul Andrew Kilmartin and Olaf Diegel

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct…

Abstract

Purpose

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct ink writing (DIW) additive manufacturing, this study aims to explore the fabrication of multimaterial devices with conductive and insulating components. Using digital light processing (DLP) additive manufacturing, this study aims to fabricate detailed objects with higher resolution than material extrusion 3D printing systems.

Design/methodology/approach

In this paper, several photocurable conducting resins were prepared for DIW and DLP additive manufacturing. These resins were then cured using 405 nm near UV light to create intrinsically conductive polymer (ICP) composites. The electrochemical properties of these composites were analysed, and the effect of co-monomer choice and crosslinking density was determined. These results determined a suitable resin for subsequent additive manufacture using DIW and DLP. These 3D printing techniques were used to develop flexible conducting devices of submillimetre resolution that were fabricated with unmodified, commercially available 3D printers.

Findings

Cyclic voltammetry and volume conductivity analysis of the conducting resins determined the most conductive resin formula for 3D printing. Conductive devices were fabricated using the two 3D printing techniques. A multimaterial soft conducting device was fabricated using DIW, and each conducting component was insulated from its neighbours. DLP was used to fabricate a soft conducting device with good XY resolution with a minimum feature size of 0.2 mm. All devices were prepared in unmodified commercially available 3D printers.

Practical implications

These findings have value in the development of soft robotics, artificial muscles and wearable sensors. In addition, this work highlights techniques for DIW and DLP additive manufacturing.

Originality/value

Several original conducting resin formulae were developed for use in two 3D printing systems. The resulting 3D-printed composites are soft and flexible while maintaining their conductive properties. These findings are of value to both polymer chemists and to the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 August 2022

Cole Brauer and Daniel Aukes

Multimaterial components possess material boundaries that introduce potential points of failure. Graded material transitions can help mitigate the impact of these abrupt property…

Abstract

Purpose

Multimaterial components possess material boundaries that introduce potential points of failure. Graded material transitions can help mitigate the impact of these abrupt property changes. This approach is becoming increasingly accessible through three-dimensional (3D) printing, but it has yet to be extensively studied for rapid prototyping processes that are limited in resolution or number of material types. This study aims to investigate methods for applying graded transitions when using manufacturing processes with these limitations.

Design/methodology/approach

This study introduces a series of transition types that have graded properties and are produced using a finite number of discrete materials. This study presents a workflow for generating, fabricating and testing these transition types. This study uses this workflow with two different manufacturing processes to characterize the impact of each transition type on the ultimate tensile strength of a component.

Findings

Graded transitions can improve the performance of a component if the proper transition type is used. For high-fidelity processes, the best performing transitions are those closest to a true gradient. For low-fidelity processes, the best performing transitions are those which provide a balance of graded properties and mechanical connection.

Research limitations/implications

The presented performance trends are specific to the studied processes and materials. Future work using different fabrication parameters can use the presented workflow to assess process-specific trends.

Originality/value

This work comprehensively compares different methods of creating graded transitions using discrete materials, including several novel approaches. It also provides a new design workflow that allows the design of graded transitions to be easily integrated into a 3D printing workflow.

Details

Rapid Prototyping Journal, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 31 October 2023

Alberto Giubilini and Paolo Minetola

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of…

Abstract

Purpose

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of additive manufacturing (AM) to new products, such as automotive suspensions.

Design/methodology/approach

An experimental approach for sample fabrication on a multiextruder 3D printer and characterization by compression testing was conducted along with numerical simulations, which were used to support the design of different auxetic configurations for the jounce bumper.

Findings

The effect of stacking different auxetic cell modules was discussed, and the findings demonstrated that a one-piece printed structure has a better performance than one composed of multiple single modules stacked on top of each other.

Research limitations/implications

The quality of the 3D printing process affected the performance of the final components and reproducibility of the results. Therefore, researchers are encouraged to further study component fabrication optimization to achieve a more reliable process.

Practical implications

This research work can help improve the manufacturing and functionality of a critical element of automotive suspension systems, such as the jounce bumper, which can efficiently reduce noise, vibration and harshness by absorbing impact energy.

Originality/value

In previous research, auxetic structures for the application of jounce bumpers have already been suggested. However, to the best of the authors’ knowledge, in this work, an AM approach was used for the first time to fabricate multimaterial auxetic structures, not only by co-printing a flexible thermoplastic polymer with a stiffer one but also by continuously extruding multilevel structures of auxetic cell modules.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2015

Abby Megan Paterson, Richard Bibb, R. Ian Campbell and Guy Bingham

– The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

2502

Abstract

Purpose

The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

Design/methodology/approach

This paper describes the design characteristics and subsequent fabrication of six different wrist splints using four different AM processes: laser sintering (LS), fused deposition modelling (FDM), stereolithography (SLA) and polyjet material jetting via Objet Connex. The suitability of each process was then compared against competing designs and processes from traditional splinting. The splints were created using a digital design workflow that combined recognised clinical best practice with design for AM principles.

Findings

Research concluded that, based on currently available technology, FDM was considered the least suitable AM process for upper extremity splinting. LS, SLA and material jetting show promise for future applications, but further research and development into AM processes, materials and splint design optimisation is required if the full potential is to be realised.

Originality/value

Unlike previous work that has applied AM processes to replicate traditional splint designs, the splints described are based on a digital design for AM workflow, incorporating novel features and physical properties not previously possible in clinical splinting. The benefits of AM for customised splint fabrication have been summarised. A range of AM processes have also been evaluated for splinting, exposing the limitations of existing technology, demonstrating novel and advantageous design features and opportunities for future research.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2014

Khershed P. Cooper and Ralph F. Wachter

The purpose of this paper is to study cyber-enabled manufacturing systems (CeMS) for additive manufacturing (AM). The technology of AM or solid free-form fabrication has received…

1011

Abstract

Purpose

The purpose of this paper is to study cyber-enabled manufacturing systems (CeMS) for additive manufacturing (AM). The technology of AM or solid free-form fabrication has received considerable attention in recent years. Several public and private interests are exploring AM to find solutions to manufacturing problems and to create new opportunities. For AM to be commercially accepted, it must make products reliably and predictably. AM processes must achieve consistency and be reproducible.

Design/methodology/approach

An approach we have taken is to foster a basic research program in CeMS for AM. The long-range goal of the program is to achieve the level of control over AM processes for industrial acceptance and wide-use of the technology. This program will develop measurement, sensing, manipulation and process control models and algorithms for AM by harnessing principles underpinning cyber-physical systems (CPS) and fundamentals of physical processes.

Findings

This paper describes the challenges facing AM and the goals of the CeMS program to meet them. It also presents preliminary results of studies in thermal modeling and process models.

Originality/value

The development of CeMS concepts for AM should address issues such as part quality and process dependability, which are key for successful application of this disruptive rapid manufacturing technology.

Details

Rapid Prototyping Journal, vol. 20 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 March 2015

Johannes Glasschroeder, Emanuel Prager and Michael F. Zaeh

The purpose of this paper is to show a possibility of how new functions can be integrated in parts, created by the powder-bed-based 3D-printing technology. One big advantage of…

1579

Abstract

Purpose

The purpose of this paper is to show a possibility of how new functions can be integrated in parts, created by the powder-bed-based 3D-printing technology. One big advantage of additive manufacturing technologies is the possibility to create function-integrated parts during the manufacturing process. This applies to mechanical functions like movable elements, thermodynamic functions like contour near cooling channels in a part as well as electrical functions like conductive lines and electrical components.

Design/methodology/approach

A powder-bed-based 3D-printer is utilized to process polymethyl methacrylate (PMMA) as base material. To enable new functionalities, an automated exhausting mechanism was implemented into the test system. The created cavities can be filled with new components or rather new materials.

Findings

Three different approaches are shown in this paper. The first one was the integration of screw nuts to enhance bolted joints compared to threads, directly created in the part. The average tensile strength could be raised from 200 to 430 N/mm. The second approach was the integration of different reinforcement elements like carbon or metallic fibers. Here again a reinforcement of the tensile strength of approximately 27 per cent could be reached. The last approach shows a method to integrate conductive material as well as electrical components in a part to create simple electrical circuits.

Originality/value

The paper demonstrates how to extend an additive powder-bed-based technology with a powder-exhausting mechanism. The possibilities of this technology are illustrated by three examples, integrating mechanical as well as electrical functions in a part.

Details

Rapid Prototyping Journal, vol. 21 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 78