Search results

1 – 5 of 5
Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 October 2023

Yi Shen, Tao He and Xiaoya Gong

Harmonic gears always work under different operating conditions and may usually break down due to lubrication failures, while its lubrication mechanism is still not clearly…

Abstract

Purpose

Harmonic gears always work under different operating conditions and may usually break down due to lubrication failures, while its lubrication mechanism is still not clearly understood. This paper aims to present a lubrication model comprehensively considering the influence of contact geometry, lubrication properties and three-dimensional (3D) real surface roughness to analyze the lubrication performance under different conditions.

Design/methodology/approach

Based on the discrete convolution-fast Fourier transformation with duplicated padding and quasi-system numerical methods, the lubrication model for harmonic gears is developed, which is verified by comparing results with available lubrication data.

Findings

The effects of meshing process, working conditions and 3D roughness on the lubrication characteristics are discussed. From the calculated cases, the increase in rotational speed and decrease of applied torque may increase the film thickness, enhancing the lubrication performance of harmonic gears. It is also observed that proper surface roughness can be used for lubrication design.

Originality/value

The research results can provide theoretical guidance for improving lubrication performance and reducing friction/wear of the harmonic gear interfaces. This study can be promoted to various engineering scenarios of harmonic gears, such as industrial robots, space-driven agencies and precision measuring instruments.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2023

Wenxun Jiang, Wen Wang and Mingfei Ma

Due to high speeds, heavy loads, large slide-to-roll ratios (SRR) and other variable operating conditions, some rolling bearings that have been working in harsh conditions may…

Abstract

Purpose

Due to high speeds, heavy loads, large slide-to-roll ratios (SRR) and other variable operating conditions, some rolling bearings that have been working in harsh conditions may experience flash temperatures in the contact area, which may result in early damage like smearing and then affect service life. This study aims to investigate the flash temperature phenomenon of rolling bearings through theoretical and experimental analysis.

Design/methodology/approach

A technology for measuring temperature distribution in rolling ball on disk contact under lubrication was developed. The test-rig can simulate the ball bearing contact. The effects of working conditions such as entrainment speed, load, SRR and lubricating oil viscosity on the flash temperature were investigated.

Findings

The results of the theoretical calculation and experiments indicate that the parameters promoting the reduction of film thickness in elastohydrodynamic lubrication are always related with the number of flash points, even film thickness reduced to mixed lubrication. The flash temperature is easier to happen in conditions of high SRR, heavy load, slow entrainment speed and low viscosity oil.

Originality/value

This work conducts an experimental study on the flash temperature phenomenon, providing a test technology for bearing lubrication and failure investigation.

Peer review

This author has opted into Transparent Peer Review available at: https://publons.com/publon/10.1108/ILT-04-2023-0104

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 December 2023

Oskar Szulc, Piotr Doerffer, Pawel Flaszynski and Marianna Braza

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Abstract

Purpose

This paper aims to describe a proposal for an innovative method of normal shock wave–turbulent boundary layer interaction (SBLI) and shock-induced separation control.

Design/methodology/approach

The concept is based on the introduction of a tangentially moving wall upstream of the shock wave and in the interaction region. The SBLI control mechanism may be implemented as a closed belt floating on an air cushion, sliding over two cylinders and forming the outer skin of the suction side of the airfoil. The presented exploratory numerical study is conducted with SPARC solver (steady 2D RANS). The effect of the moving wall is presented for the NACA 0012 airfoil operating in transonic conditions.

Findings

To assess the accuracy of obtained solutions, validation of the computational model is demonstrated against the experimental data of Harris, Ladson & Hill and Mineck & Hartwich (NASA Langley). The comparison is conducted not only for the reference (impermeable) but also for the perforated (permeable) surface NACA 0012 airfoils. Subsequent numerical analysis of SBLI control by moving wall confirms that for the selected velocity ratios, the method is able to improve the shock-upstream boundary layer and counteract flow separation, significantly increasing the airfoil aerodynamic performance.

Originality/value

The moving wall concept as a means of normal shock wave–turbulent boundary layer interaction and shock-induced separation control has been investigated in detail for the first time. The study quantified the necessary operational requirements of such a system and practicable aerodynamic efficiency gains and simultaneously revealed the considerable potential of this promising idea, stimulating a new direction for future investigations regarding SBLI control.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Jonathan Núñez Aedo, Marcela A. Cruchaga and Mario A. Storti

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Abstract

Purpose

This paper aims to report the study of a fluid buoy system that includes wave effects, with particular emphasis on validating the numerical results with experimental data.

Design/methodology/approach

A fluid–solid coupled algorithm is proposed to describe the motion of a rigid buoy under the effects of waves. The Navier–Stokes equations are solved with the open-source finite volume package Code Saturne, in which a free-surface capture technique and equations of motion for the solid are implemented. An ad hoc experiment on a laboratory scale is built. A buoy is placed into a tank partially filled with water; the tank is mounted into a shake table and subjected to controlled motion that promotes waves. The experiment allows for recording the evolution of the free surface at the control points using the ultrasonic sensors and the movement of the buoy by tracking the markers by postprocessing the recorded videos. The numerical results are validated by comparison with the experimental data.

Findings

The implemented free-surface technique, developed within the framework of the finite-volume method, is validated. The best-obtained agreement is for small amplitudes compatible with the waves evolving under deep-water conditions. Second, the algorithm proposed to describe rigid-body motion, including wave analysis, is validated. The numerical body motion and wave pattern satisfactorily matched the experimental data. The complete 3D proposed model can realistically describe buoy motions under the effects of stationary waves.

Originality/value

The novel aspects of this study encompass the implementation of a fluid–structure interaction strategy to describe rigid-body motion, including wave effects in a finite-volume context, and the reported free-surface and buoy position measurements from experiments. To the best of the authors’ knowledge, the numerical strategy, the validation of the computed results and the experimental data are all original contributions of this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5