Search results

1 – 10 of 220
Article
Publication date: 2 July 2020

Jia-Jia Zhao, Ming-Xing Lin, Xian-Chun Song and Nan Wei

This paper aims to provide thermal elastohydrodynamic lubrication (TEHL) contact model to study all balls’ lubrication performance of the ball screw when the multidirectional load

Abstract

Purpose

This paper aims to provide thermal elastohydrodynamic lubrication (TEHL) contact model to study all balls’ lubrication performance of the ball screw when the multidirectional load is applied.

Design/methodology/approach

A new TEHL contact model combining the multidirectional load and the roughness surface texture is established to describe fatigue life of the ball screw. Meanwhile, the authors use the Reynolds equation to study the lubrication performance of the ball screw.

Findings

When the multidirectional load is applied, contact load, slide-roll ratio and entrainment velocity of all balls have a periodic shape. The TEHL performance values at the ball-screw contact points including contact stress, shear stress, minimum film thickness and temperature rise are higher than that at the ball-nut contact points. The TEHL performance values increase with the increase of root mean square (RMS) except for the film thickness. In addition, the radial load of the ball screw has a significant effect on the fatigue life.

Originality/value

The results of the studies demonstrate the new TEHL contact model that provides the instructive significance to analyze the fatigue life of the ball screw under the multidirectional load.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0097/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2014

Jaroslaw Kotlinski

– This paper aims to relate to the study of mechanical properties of materials used in rapid prototyping (RP).

2801

Abstract

Purpose

This paper aims to relate to the study of mechanical properties of materials used in rapid prototyping (RP).

Design/methodology/approach

Comparison of mechanical properties of commercial RP materials. The study of the literature was the essential source of obtaining the results necessary to complete the evaluations and to determine the property ranges.

Findings

Specifications of mechanical properties collected in one paper about mechanical properties and anisotropy enable to define limitations for prototype properties.

Research limitations/implications

The study is limited to accessible data concerning materials from manufacturers’ offers.

Practical implications

The study is particularly useful in the RP methods application.

Originality/value

The obtained study of mechanical properties makes a quick analysis possible. This article also includes the guideline for design engineers, which determines RP method suitability to create functional prototypes of the machines. Mechanical properties of materials have been adopted as a criterion.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 June 2020

Asliah Seharing, Abdul Hadi Azman and Shahrum Abdullah

The objective of this paper is to identify suitable lattice structure patterns for the design of porous bone implants manufactured using additive manufacturing.

Abstract

Purpose

The objective of this paper is to identify suitable lattice structure patterns for the design of porous bone implants manufactured using additive manufacturing.

Design/methodology/approach

The study serves to compare and analyse the mechanical behaviours between cubic and octet-truss gradient lattice structures. The method used was uniaxial compression simulations using finite element analysis to identify the translational displacements.

Findings

From the simulation results, in comparison to the cubic lattice structure, the octet-truss lattice structure showed a significant difference in mechanical behaviour. In the same design space, the translational displacement for both lattice structures increased as the relative density decreased. Apart from the relative density, the microarchitecture of the lattice structure also influenced the mechanical behaviour of the gradient lattice structure.

Research limitations/implications

Gradient lattice structures are suitable for bone implant applications because of the variation of pore sizes that mimic the natural bone structures. The complex geometry that gradient lattice structures possess can be manufactured using additive manufacturing technology.

Originality/value

The results demonstrated that the cubic gradient lattice structure has the best mechanical behaviour for bone implants with appropriate relative density and pore size.

Details

International Journal of Structural Integrity, vol. 11 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 October 2023

Anuj Kumar and Mukul Shukla

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they…

Abstract

Purpose

Understanding and tailoring the solidification characteristics and microstructure evolution in as-built parts fabricated by laser powder bed fusion (LPBF) is crucial as they influence the final properties. Experimental approaches to address this issue are time and capital-intensive. This study aims to develop an efficient numerical modeling approach to develop the process–structure (P-S) linkage for LPBF-processed Inconel 718.

Design/methodology/approach

In this study, a numerical approach based on the finite element method and cellular automata was used to model the multilayer, multitrack LPBF build for predicting the solidification characteristics (thermal gradient G and solidification rate R) and the average grain size. Validations from published experimental studies were also carried out to ensure the reliability of the proposed numerical approach. Furthermore, microstructure simulations were used to develop P-S linkage by evaluating the effects of key LPBF process parameters on G × R, G/R and average grain size. A solidification or G-R map was also developed to comprehend the P-S linkage.

Findings

It was concluded from the developed G-R map that low laser power and high scan speed will result in a finer microstructure due to an increase in G × R, but due to a decrease in G/R, columnar characteristics are also reduced. Moreover, increasing the layer thickness and decreasing the hatch spacing lowers the G × R, raises the G/R and generates a coarse columnar microstructure.

Originality/value

The proposed numerical modeling approach was used to parametrically investigate the effect of LPBF parameters on the resulting microstructure. A G-R map was also developed that enables the tailoring of the as-built LPBF microstructure through solidification characteristics by tuning the process parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 February 2021

Kamal Kishore Joshi and Vishesh Ranjan Kar

The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation…

Abstract

Purpose

The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation patterns and degrees of material heterogeneity. Here, deformation characteristics are obtained under different loading and support conditions.

Design/methodology/approach

The finite element solutions of multidirectional functionally graded composite panels subjected to uniform and sinusoidal transverse loads are presented under different support conditions. Here, different functionally graded composites, such as unidirectional (1D) and multidirectional (2D/3D), are considered by distributing constituent materials in one, two and three directions, respectively, using single and multivariable power-law functions. A constitutive model with fully spatial-dependent elastic stiffness is developed, whereas the kinematics of the present structure is defined using equivalent single-layer higher-order theory. The weak form, based on the principle of virtual work, is established and solved consequently using isoparametric finite element approximations via quadrilateral Lagrangian elements.

Findings

The appropriate mesh-refinement process is carried out to achieve the mesh convergence; whereas, the correctness of proposed heterogeneous model is confirmed through a verification test. The comprehensive numerical assessment of multidirectional functionally graded panels under various loading and support conditions depicts the importance of degree of material heterogeneity with different gradation patterns and volume-fraction exponents.

Originality/value

A comprehensive analysis on the deformation behaviour of 1D-functionally graded materials (FGMs) (X-FGM, Y-FGM and Z-FGM), 2D-FGMs (XY-FGM, YZ-FGM and XZ-FGM) and 3D-FGM composite panels FGM structures is presented. Multifaceted heterogeneous FGMs are modelled by varying constituent materials in one, two and three directions, using power-law functions. The constitutive model of multi-directional FGM is developed using fully spatial-dependent elastic matrix and higher-order kinematics. Isoparametric 2D finite element formulation is adopted using quadrilateral Lagrangian elements to model 1D/2D/3D-FGM structures and to obtain their deflection responses under different loading and support conditions.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 July 2022

Marya Alraqad, Rabab Allouzi and Amer Alkloub

Short columns can cause serious damage when subjected to an earthquake due to their high stiffness with low ductility. These columns can be exposed to multidirectional shear…

60

Abstract

Purpose

Short columns can cause serious damage when subjected to an earthquake due to their high stiffness with low ductility. These columns can be exposed to multidirectional shear forces, which encouraged this study to investigate the behavior of structural short columns under bi-directional shear.

Design/methodology/approach

Finite element analysis (FEA) using ABAQUS is conducted and calibrated based on experimental data tested by previous researchers who studied the uni-directional behavior of short columns subjected to cyclic shear displacements. Then, the calibrated column models are further investigated to study the influence of bidirectional cyclic shear. Two scenarios are investigated, namely “simultaneous” and “sequential,” to compare the performance in terms of shear strength reduction.

Findings

The results show that the shear strength reduction significantly appears when 1:1 simultaneous bi-directional cyclic shear is applied. However, the shear reduction is more significant when the sequential scenario is applied. The seismic forces or deformations applied in orthogonal directions should be combined to achieve the maximum seismic response of structures as specified in Federal Emergency Management Agency (FEMA) 356 Standard. Finally, the combinations presented in literature to consider bi-directional shear are investigated. Based on FE results, the effect of applied 1:0.30 bi-directional cyclic shear simultaneously does not result in significant effect on the considered columns properly design for seismic forces.

Originality/value

To investigate the effect of multidirectional shear forces on the shear strength capacity of short columns, the presented effect of multidirectional shear forces in literature to consider bi-directional shear are investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 May 2022

Arunangshu Mukhopadhyay and Vivek Prasad Shaw

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of…

Abstract

Purpose

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of this study is to investigate the effect of abrasion on the change in surface appearance, mass loss and ultimate tensile properties of the stretch denim fabric in different directions (warp, weft and biased).

Design/methodology/approach

After abrading the fabrics in three different directions (warp, weft and biased), the loss in ultimate tensile properties, mass loss and surface appearance has been investigated in the respective directions of abrasion (warp, weft and biased). The study also encompasses the effect of different types of stretch yarn with varying levels of elastane content on such unidirectional abrasive damage.

Findings

It is seen that with the same level of abrasion cycles, the fabric's response in terms of mass loss and loss in ultimate tensile properties are different in different directions. The mass loss due to abrasion in biased direction is found to be minimum. The loss in ultimate tensile properties due to abrasion was highest in the weft direction. It is also found that the higher mass loss due to abrasion does not always result in a greater loss in ultimate tensile properties. The composition and the structure of the weft yarn significantly affected the extent of the mass loss and the loss in ultimate tensile properties during abrasive damage.

Originality/value

The impact of abrasive damage in terms of mass loss and loss in tensile strength along the different directions of denim fabric has not been explored till date. Abrasion of fabric can be done both in multi-direction (Lissajous motion) as well as in uni-direction (linear motion). The multidirectional abrasion provides a holistic or comprehensive idea of the fabric's response to the abrasive damage but does not take into consideration the fabric's anisotropic response to the abrasive damage. Most of the earlier investigation related to abrasive damage of denim fabric has been done in instruments where the motion of the abrader is multidirectional (Lissajous) in nature. For greater depth of understanding about the fabric performance under abrasive damage along the various direction (warp, weft and biased), unidirectional abrasion is conducted in this study.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2004

V.V.S. Rao, K. Krishna Veni and P.K. Sinha

This paper deals with the experimental investigation and non‐linear finite element analysis of composite wing T‐joints in hygrothermal environments. This study is concerned with…

1055

Abstract

This paper deals with the experimental investigation and non‐linear finite element analysis of composite wing T‐joints in hygrothermal environments. This study is concerned with T‐joints subjected to tension (pull‐out) force and their behaviour up to ultimate failure under bone dry and hygrothermal environments. The behaviour of such joints is complex due to the geometry of the joint configuration and laminated construction. T‐joints are also susceptible when exposed to moisture and temperature environments. As a consequence, the stiffness and strength properties of laminates because degraded. A three‐dimensional 20‐noded multidirectional composite element is developed using three‐dimensional super element concept to analyse both unstitched and stitched T‐joints. All the stress components are computed and the failure loads are evaluated using different failure criteria to get better insight into the behaviour of laminated composite wing T‐joints.

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 21 August 2017

Gregor Lux, Marco Ulrich, Thomas Baker, Martin Hutterer and Gunther Reinhart

Articulated robots are widely used in industrial applications owing to their high repeatability accuracy. In terms of new applications such as robot-based inspection systems, the…

Abstract

Purpose

Articulated robots are widely used in industrial applications owing to their high repeatability accuracy. In terms of new applications such as robot-based inspection systems, the limitation is a lack of pose accuracy. Mostly, robot calibration approaches are used for the improvement of the pose accuracy. Such approaches however require a profound understanding of the determining effects. This paper aims to provide a non-destructive analysis method for the identification and characterisation of non-geometric accuracy effects in relation to the kinematic structure for the purpose of an accuracy enhancement.

Design/methodology/approach

The analysis is realised by a non-destructive method for rotational, uncoupled robot axes with the use of a 3D lasertracker. For each robot axis, the lasertracker position data for multiple reflectors are merged with the joint angles given by the robot controller. Based on this, the joint characteristics are determined. Furthermore, the influence of the kinematic structure is investigated.

Findings

This paper analyses the influence of the kinematic structure and non-geometric effects on the pose accuracy of standard articulated robots. The provided method is shown for two different industrial robots and presented effects incorporate tilting of the robot, torsional joint stiffness, hysteresis, influence of counter balance systems, as well as wear and damage.

Practical implications

Based on these results, an improved robot model for a better match between the mathematical description and the real robot system can be achieved by characterising non-geometric effects. In addition, wear and damages can be identified without a disassembly of the system.

Originality/value

The presented method for the analysis of non-geometric effects can be used in general for rotational, uncoupled robot axes. Furthermore, the investigated accuracy influencing effects can be taken into account to realise high-accuracy applications.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 November 2021

Liliana-Laura Badita, Virgil Florescu, Constantin Tiganesteanu and Lucian Capitanu

The study aims to analyze the fretting phenomenon, manifested at the taper junctions of modular total hip prostheses (THP). Modularity of prostheses implies the micro-movement…

Abstract

Purpose

The study aims to analyze the fretting phenomenon, manifested at the taper junctions of modular total hip prostheses (THP). Modularity of prostheses implies the micro-movement occurrence. Fractures can arise as a result of the fretting cracking of the prostheses components, affecting durability of modular THPs. Fretting corrosion is associated with the decrease in the clinical acceptance of hip modular implants.

Design/methodology/approach

Starting from the fretting phenomenon influence on modularity, monoblock THPs and prostheses with modular femoral head recovered from some review surgeries were investigated. Modular prostheses have a taper junction femoral head – femoral stem neck. Investigation consisted in the analysis of fretting wear and fretting corrosion, of the femoral heads’ taper and of the femoral stems’ trunnions.

Findings

The main result was that the micro-movement that provokes the fretting of the femoral head-femoral stem taper junction analyzed does not have the same direction. It is manifesting in the direction of the axis of the femoral head taper, around this axis or as a composed movement. The authors suspect that this is due to the different design of the taper. In this way, the inclination of the stem’s trunnion into the head hole has a different angular misalignment and may cause greater damages of the taper.

Originality/value

This result can be a starting point from the improvement of the future taper junctions design that will improve the quality, durability and modularity of THPs.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 220