Search results

1 – 10 of over 1000
Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 4 May 2012

Praveen Kumar Gupta, A. Yildirim and K.N. Rai

This purpose of this paper is to find the approximate analytical solutions of a multidimensional partial differential equation such as Helmholtz equation with space fractional…

287

Abstract

Purpose

This purpose of this paper is to find the approximate analytical solutions of a multidimensional partial differential equation such as Helmholtz equation with space fractional derivatives α,β,γ (1<α,β,γ≤2). The fractional derivatives are described in the Caputo sense.

Design/methodology/approach

By using initial values, the explicit solutions of the equation are solved with powerful mathematical tools such as He's homotopy perturbation method (HPM).

Findings

This result reveals that the HPM demonstrates the effectiveness, validity, potentiality and reliability of the method in reality and gives the exact solution.

Originality/value

The most important part of this method is to introduce a homotopy parameter (p), which takes values from [0,1]. When p=0, the equation usually reduces to a sufficiently initial form, which normally admits a rather simple solution. When p→1, the system goes through a sequence of deformations, the solution for each of which is close to that at the previous stage of deformation. Here, we also discuss the approximate analytical solution of multidimensional fractional Helmholtz equation.

Article
Publication date: 13 July 2010

M. Pineda‐Sanchez, F. Chinesta, J. Roger‐Folch, M. Riera‐Guasp, J. Pérez‐Cruz and F. Daïm

The purpose of this paper is to apply the method of separation of variables to obtain the current distribution in the slot of an electrical machine, taking into account the skin…

Abstract

Purpose

The purpose of this paper is to apply the method of separation of variables to obtain the current distribution in the slot of an electrical machine, taking into account the skin effect.

Design/methodology/approach

A slot in an electrical machine, filled with a solid conductor, and fed with an externally imposed density current, presents a current distribution that depends on the skin effect. The magnetic potential vector is formulated and solved using a separate representation as a finite sum of unidimensional (space and time) functions, taking into account the boundary conditions. The proposed method obtains the transient and permanent distribution of the current in the interior of the slot, both in transient and steady regime, and the results at the end of the transient are compared with the analytic ones in permanent regime.

Findings

The magnetic potential vector in the interior of a slot filled with a solid conductor can be expressed as a finite sum of just 16 modes, which capture the evolution of the field during the transient and permanent regime. These modes are expressed as the product of space and time functions, which have been obtained automatically by the separation of variables algorithm. Instead of solving multiple field problems, one for each time instant, the proposed method just solves two single‐variable differential equations, one in the time domain and other in the spatial one.

Research limitations/implications

The application of the proposed method to non‐sinusoidal currents, such as those generated by variable speed‐drives, would allow to compute the field taking into account both the very small time scale of the pulse width modulation pulses, in the range of kiloHz, and the wide time scale of the currents envelope, in the range of 0‐100 Hz. Extension to 2D and 3D spatial configurations is also under consideration.

Originality/value

Using the method of separation of variables to solve electromagnetic problems provides a new method which can simplify and speed up the computation of transient fields in multidimensional time and space domains.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1994

H. –J. Leister and M. Perić

The paper presents an extension of Stone’s1 strongly implicitprocedure for solving linear equation systems resulting from thediscretization of partial differential equations to…

Abstract

The paper presents an extension of Stone’s1 strongly implicit procedure for solving linear equation systems resulting from the discretization of partial differential equations to three‐dimensional problems. The solver is applicable to seven‐diagonal coefficient matrices, as are obtained when central‐difference approximations are used for discretization. The algorithm is implemented in a way which allows vector processing on modern supercomputers, in spite of its recursive structure. Other solvers, using incomplete lower‐upper decomposition (ILU), can be vectorized in the same way. Test calculations show solver performance of about 150 Mflops on CRAY—YMP and over 200 Mflops on FUJITSU—VP200 computers. A listing of the FORTRAN code is provided.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Saeid Aghighi, Amine Ammar, Christelle Metivier and Francisco Chinesta

The purpose of this paper is to focus on the advanced solution of the parametric non-linear model related to the Rayleigh-Benard laminar flow involved in the modeling of natural…

Abstract

Purpose

The purpose of this paper is to focus on the advanced solution of the parametric non-linear model related to the Rayleigh-Benard laminar flow involved in the modeling of natural thermal convection. This flow is fully determined by the dimensionless Prandtl and Rayleigh numbers. Thus, if one could precompute (off-line) the model solution for any possible choice of these two parameters the analysis of many possible scenarios could be performed on-line and in real time.

Design/methodology/approach

In this paper both parameters are introduced as model extra-coordinates, and then the resulting multidimensional problem solved thanks to the space-parameters separated representation involved in the proper generalized decomposition (PGD) that allows circumventing the curse of dimensionality. Thus the parametric solution will be available fast and easily.

Findings

Such parametric solution could be viewed as a sort of abacus, but despite its inherent interest such calculation is at present unaffordable for nowadays computing availabilities because one must solve too many problems and of course store all the solutions related to each choice of both parameters.

Originality/value

Parametric solution of coupled models by using the PGD. Model reduction of complex coupled flow models. Analysis of Rayleigh-Bernard flows involving nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

Hosein Molavi, Javad Rezapour, Sahar Noori, Sadjad Ghasemloo and Kourosh Amir Aslani

The purpose of this paper is to present novel search formulations in gradient‐type methods for prediction of boundary heat flux distribution in two‐dimensional nonlinear heat…

Abstract

Purpose

The purpose of this paper is to present novel search formulations in gradient‐type methods for prediction of boundary heat flux distribution in two‐dimensional nonlinear heat conduction problems.

Design/methodology/approach

The performance of gradient‐type methods is strongly contingent upon the effective determination of the search direction. Based on the definition of this parameter, gradient‐based methods such as steepest descent, various versions of both conjugate gradient and quasi‐Newton can be distinguished. By introducing new search techniques, several examples in the presence of noise in data are studied and discussed to verify the accuracy and efficiency of the present strategies.

Findings

The verification of the proposed methods for recovering time and space varying heat flux. The performance of the proposed methods via comparisons with the classical methods involved in its derivation.

Originality/value

The innovation of the present method is to use a hybridization of a conjugate gradient and a quasi‐Newton method to determine the search directions in gradient‐based approaches.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2000

J. Akhtar

Optimisation of the discretising steps in the space and time domains has been studied for the evaluation of corresponding optimum value of over‐relaxation parameter in the…

Abstract

Optimisation of the discretising steps in the space and time domains has been studied for the evaluation of corresponding optimum value of over‐relaxation parameter in the numerical solution of transient heat flow equation using successive‐over‐relaxation method in the finite difference code. No closed form solutions are available for the optimisation of a complete set of involved parameters in such problems. The present work deals quantitatively with the need for a more generalised closed form relation involving discretising steps in the space and the time domains for an optimal over‐relaxation parameter. The maximum finite difference error and the number of iterations required to achieve a reasonable error tolerance in the functional value are the two criteria used to obtain an optimised set of parameters. The effect of deviation from the optimised values of any of the involved parameters has been shown over a model problem of one‐dimensional diamond‐IIa medium of 100 micrometer length and for a time duration of 1.24 micro‐seconds.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2013

Francisco Chinesta, Adrien Leygue, Marianne Beringhier, Linh Tuan Nguyen, Jean‐Claude Grandidier, Bernhard Schrefler and Francisco Pesavento

The purpose of this paper is to solve non‐linear parametric thermal models defined in degenerated geometries, such as plate and shell geometries.

Abstract

Purpose

The purpose of this paper is to solve non‐linear parametric thermal models defined in degenerated geometries, such as plate and shell geometries.

Design/methodology/approach

The work presented in this paper is based in a combination of the proper generalized decomposition (PGD) that proceeds to a separated representation of the involved fields and advanced non‐linear solvers. A particular emphasis is put on the asymptotic numerical method.

Findings

The authors demonstrate that this approach is valid for computing the solution of challenging thermal models and parametric models.

Originality/value

This is the first time that PGD is combined with advanced non‐linear solvers in the context of non‐linear transient parametric thermal models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1993

R.D. LONSDALE

A simple algebraic multigrid (AMG) solver for linear equations is presented, and its performance compared with a conjugate gradient scheme. This multigrid method is extended to…

Abstract

A simple algebraic multigrid (AMG) solver for linear equations is presented, and its performance compared with a conjugate gradient scheme. This multigrid method is extended to solve the discrete Navier—Stokes equations, obtained by applying a finite volume approach to three‐dimensional incompressible flow on a finite element mesh. The resulting multigrid solver is incorporated into a general purpose flow code (ASTEC), where it proves faster than the original solution algorithm, based upon SIMPLE. The linear AMG solver is both efficient and robust, but the extension to include coupling in the Navier—Stokes equations does not converge on all problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 2001

A.K. Satapathy and R.K. Sahoo

A numerical study has been made to investigate the effect of internal heating and precursory cooling during quenching of an infinite tube. The finite difference solution gives the…

Abstract

A numerical study has been made to investigate the effect of internal heating and precursory cooling during quenching of an infinite tube. The finite difference solution gives the quench front temperature as a function of various model parameters such as Peclet number, Biot number and dimensionless heat flux. The parametric dependence of the rewetting rate is obtained by the condition that the surface can only be wetted when its temperature is below the quench front temperature. Also, the critical heat flux is obtained by setting Peclet number equal to zero, which gives the minimum heat flux required to prevent the hot surface being rewetted. The numerical model is validated by comparing the results with known closed form solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000