Search results

1 – 10 of 13
Article
Publication date: 9 February 2018

Qiang Zhou, Danping Zou and Peilin Liu

This paper aims to develop an obstacle avoidance system for a multi-rotor micro aerial vehicle (MAV) that flies in indoor environments which usually contain transparent…

Abstract

Purpose

This paper aims to develop an obstacle avoidance system for a multi-rotor micro aerial vehicle (MAV) that flies in indoor environments which usually contain transparent, texture-less or moving objects.

Design/methodology/approach

The system adopts a combination of a stereo camera and an ultrasonic sensor to detect obstacles and extracts three-dimensional (3D) point clouds. The obstacle map is built on a coarse global map and updated by local maps generated by the recent 3D point clouds. An efficient layered A* path planning algorithm is also proposed to address the path planning in 3D space for MAVs.

Findings

The authors conducted a lot of experiments in both static and dynamic scenes. The results show that the obstacle avoidance system works reliably even when transparent or texture-less obstacles are present. The layered A* path planning algorithm is much faster than the traditional 3D algorithm and makes the system response quickly when the obstacle map has been changed because of the moving objects.

Research limitations/implications

The limited field of view of both stereo camera and ultrasonic sensor makes the system need to change heading first before moving side to side or moving backward. But this problem could be addressed when multiple systems are mounted toward different directions on the MAV.

Practical implications

The developed approach could be valuable to applications in indoors.

Originality/value

This paper presents a robust obstacle avoidance system and a fast layered path planning algorithm that are easy to be implemented for practical systems.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2022

Shuang Hao, Guangming Song, Juzheng Mao, Yue Gu and Aiguo Song

This paper aims to present a fully actuated aerial manipulator (AM) with a robust motion/force hybrid controller for conducting contact-typed inspection tasks in industrial plants.

Abstract

Purpose

This paper aims to present a fully actuated aerial manipulator (AM) with a robust motion/force hybrid controller for conducting contact-typed inspection tasks in industrial plants.

Design/methodology/approach

An AM is designed based on a hexarotor with tilted rotors and a rigidly attached end effector. By tilting the rotors, the position and attitude of the AM can be controlled independently, and the AM can actively exert forces on industrial facilities through the rigidly attached end effector. A motion/force hybrid controller is proposed to perform contact-typed inspection tasks. The contact-typed inspection task is divided into the approach phase and the contact phase. In the approach phase, the AM automatically approaches the contact surface. In the contact phase, a motion/force hybrid controller is used for contact-typed inspection. Finally, a disturbance observer (DOB) is used to estimate external disturbances and used as feedforward compensation.

Findings

The proposed AM can slowly approach the contact surface without significant impact in the contact phase. It can realize constant force control in the direction normal to the contact surface in the contact phase, whereas the motion of the remaining directions can be controlled by the operator. The use of the DOB ensures the robustness of the AM in the presence of external wind disturbances.

Originality/value

A fully actuated AM system with a robust motion/force hybrid controller is proposed. The effectiveness of the proposed AM system for conducting contact-typed industrial inspection tasks is validated by practical experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 January 2023

Tri Bien Minh, Hien Vo and Luan Thanh Hua

The main purpose of the study was mechanical designing, simulation and manufacturing process for a new model of octocopter V-frame and to achieve simple manufacturing with 3D…

Abstract

Purpose

The main purpose of the study was mechanical designing, simulation and manufacturing process for a new model of octocopter V-frame and to achieve simple manufacturing with 3D printing technology. Moreover, the octocopter PID controller was simulated on the Simulink environment to get performance on the roll and pitch angle control.

Design/methodology/approach

Octocopter is one kind of multirotor vehicle (a rotorcraft with more than two rotors), that has lately gained a lot of attention for both the scientific and commercial spheres. With a greater number of rotors, the multirotor is very maneuverable and robust. Multi-copter makes an important contribution to the technological revolution in the military, industry, transportation, mapping and especially agriculture. Nowadays, we are heading to the four-industrial revolutions as well as the new technological application in the agricultural field such as precision agriculture, mapping and surveillance. Due to recently advanced technology about sensors, electronics, 3D printing, battery with high performance, multi-copter can be manufactured at low cost.

Findings

The V-frame octocopter was chosen to design in this paper; it had better performance scores including high redundancy rotors, high payload capability and affordable cost than another multi-copter family. The V-frame octocopter increasing freedom field of view of the camera was considered to place the camera position in the front of the drone.

Research limitations/implications

For the future aspects, the mechanical structure of the octocopter could be improved by using more advanced metal 3D printing to produce the aluminum or titan alloy materials for lighter and more rigid compared with ABS material, and finally the assembly to the real test.

Originality/value

The study shows the new platform of the V-frame octocopter kinematics analysis, designed on the CAD software, with some important mechanical parts using FEM analysis to find the highest stress and displacement under high load applied, the result of all connecting the joints 3D printing part is completely safe. Mechanical parts were manufactured by using 3D printing technology and CNC milling. Moreover, the study has shown V-frame octocopter simulation based on Simulink using the second method Ziegler- Nichols to find suitable parameters of the PID controller for roll and pitch angle. Using the block simulation is good for implementing and fast checking the new algorithm when building the new platform of the robot.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 12 January 2024

Gowtham G. and Jagan Raj R.

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their…

Abstract

Purpose

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their compact size and ease of assembly. Because they are quite unstable, autonomous control systems would be used to overcome this problem. Modelling autonomous control is predominant as the research scope faces challenges because of its highly non-linear, multivariable system with 6 degree of freedom.

Design/methodology/approach

Quadcopters with antonym systems can operate in an unknown environment by overcoming unexpected disturbances. The first objective when designing such a system is to design an accurate mathematical model to describe the dynamics of the system. Newton’s law of motion was used to build the mathematical model of the system.

Findings

Establishment of the mathematical model and the physics behind a four propeller drone for the frame TAROT 650 carbon was done. Simulink model was developed based on the mathematical model for simulating the complete dynamics of the drone as well as location and gusts were included to check the stability.

Originality/value

The control response of the system was simulated numerically results are discussed. The trajectory path was found. The phases with their own parameters can be used to implement the mathematical model for another type of quadcopter model and achieve quick development.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 June 2016

Rui Wang and Youhei Kawamura

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted…

Abstract

Purpose

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted lightweight magnetic wheel units with relatively high attractive force and friction force.

Design/methodology/approach

The robot has the main advantages of being compact (352 × – 215 × – 155 mm), lightweight (2.3 kg without battery) and simple mechanical structure. It is not only able to climb vertical walls and follow circumferential paths, but also able to pass complex obstacles such as bolts, steps, convex and concave corners with almost any inclination regarding gravity. By using a servo as a compliant joint, the wheel base can be changed to enable the robot to overcome convex corners.

Findings

The experiment results show that the climbing robot has a good performance on locomotion, and it is successful in negotiating the complex obstacles. On the other hand, the limitations in locomotion of the robot are also presented.

Originality/value

Compared with the past researches, the robot shows good performance on overcoming complex obstacles such as concave corners, convex corners, bolts and steps on the steel bridge. Magnetic wheel with the characterization of compact size and lightweight is able to provide bigger adhesion force and friction coefficient.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 January 2015

Agus Budiyono, Gigun Lee, Gyou Beom Kim, Jungkeun Park, Taesam Kang and Kwang Joon Yoon

– The purpose of this paper was to present the process of building hardware and software for a collision avoidance system of a quadrotor capable of an indoor autonomous flight.

Abstract

Purpose

The purpose of this paper was to present the process of building hardware and software for a collision avoidance system of a quadrotor capable of an indoor autonomous flight.

Design/methodology/approach

The system development was carried out in two steps. First, the quadrotor system was designed to mount mission equipments for an indoor flight. The prediction error minimization (PEM) method was used for system identification of the quadrotor, and the linear quadratic regulator (LQR) control method was used for the attitude control. Second, a collision detection system was realized by using a Kinect sensor, an embedded board and a ground control system (GCS). A Kinect sensor with embedded board can send the 3D depth information to GCS and then the GCS displays the 3D depth information with a warning message.

Findings

As the controller design requires a linear model, the PEM method was used in system identification. The LQR was used in controller design. It was found that the use of the PEM method for system identification was effective for developing a linear model required for a practical control system using LQR. As 3D depth information from a Kinect sensor is quite accurate in an indoor environment, a collision detection system with Kinect was successfully developed.

Practical implications

The step-by-step approach presented in this paper can be used to develop an autonomous aerial vehicle capable of navigating in an indoor environment with obstacles.

Originality/value

The primary contribution of the paper is the presentation of a practical method for developing a low-cost collision avoidance system for a quadrotor vehicle.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 November 2021

Vinoth Kumar Annamalai and Selvakumaran Thunaipragasam

The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral…

Abstract

Purpose

The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral Derivative (PID) controller to stabilize the altitude and attitude of the UAV subjected to various flying conditions.

Design/methodology/approach

First, the proposed UAV with a tilting mechanism is designed and analyzed to obtain the aerodynamic parameters. Second, the dynamics of the proposed UAV are mathematically modeled using Newton-Euler formation. Then, the PID controller is implemented in the simulation model to control flight maneuvers. The model parameters were implemented in a mathematical model to find the system’s stability for various flight conditions. The model was linearized to determine the PID gain values for vertical take-off and landing, cruise and transition mode. The PID controller was tuned to obtain the desired altitude and attitude in a short period. The tuned PID gain values were implemented in the PID controller and the model was simulated.

Findings

The main contribution of this study is the mathematical model and controller for a UAV without any control surface and uses only a thrust vector control mechanism which reduces the complexity of the controller. The simulation has been carried out for various flight conditions. The altitude PID controller and the attitude PID controller for CSL-TTR-UAV were tuned to obtain desired altitude and attitude within the optimum duration of 4 s and deviation in the attitude of 8%, which is within the allowable limit of 14%. The findings obtained from the simulation revels that the altitude and attitude control of the CSL-TTR-UAV was achieved by controlling the rpm of the rotor and tilt angle using the PID controller.

Originality/value

A novel CSL TTR UAV mathematical model is developed with a dual tilting mechanism for a tail rotor and single axis tilt for the rotors in the wing. The flight control model controls the UAV without a control surface using a PID controller for the thrust vector mechanism.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 April 2016

Deepak B B V L and Pritpal Singh

In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different…

1889

Abstract

Purpose

In the previous decade, unmanned aerial vehicles (UAVs) have turned into a subject of enthusiasm for some exploration associations. UAVs are discovering applications in different regions going from military applications to activity reconnaissance. The purpose of this paper is to overview a particular sort of UAV called quadrotor or quadcopter.

Design/methodology/approach

This paper includes the dynamic models of a quadrotor and the distinctive model-reliant and model-autonomous control systems and their correlation.

Findings

In the present time, focus has moved to outlining autonomous quadrotors. Ultimately, the paper examines the potential applications of quadrotors and their part in multi-operators frameworks.

Originality/value

This investigation deals with the review on various quadrotors, their applications and motion control strategies.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 31 May 2023

Ran Jiao, Yongfeng Rong, Mingjie Dong and Jianfeng Li

This paper aims to tackle the problem for a fully actuated unmanned aerial vehicle (FUAV) to perform physical interaction tasks in the Global Positioning System-denied…

Abstract

Purpose

This paper aims to tackle the problem for a fully actuated unmanned aerial vehicle (FUAV) to perform physical interaction tasks in the Global Positioning System-denied environments without expensive motion capture system (like VICON) under disturbances.

Design/methodology/approach

A tether-based positioning system consisting of a universal joint, a tether-actuated absolute position encoder and an attitude sensor is designed to provide reliable position feedback for the FUAV. To handle the disturbances, including the tension force caused by the taut tether, model uncertainties and other external disturbances such as aerodynamic disturbance, a hybrid disturbance observer (HDO) combining the position-based method and momentum-based technology with force sensor feedback is designed for the system. In addition, an HDO-based impedance controller is built to allow the FUAV interacting with the environment and meanwhile rejecting the disturbances.

Findings

Experimental validations of the proposed control algorithm are implemented on a real FUAV with the result of nice disturbance rejection capability and physical interaction performance.

Originality/value

A cheap alternative to indoor positioning system is proposed, with which the FUAV is able to interact with external environment and meanwhile reject the disturbances under the help of proposed hybrid disturbance observer and the impedance controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 April 2013

Stefan Winkvist, Emma Rushforth and Ken Young

The purpose of this paper is to present a novel approach to the design of an autonomous Unmanned Aerial Vehicle (UAV) to aid with the internal inspection and classification of…

1121

Abstract

Purpose

The purpose of this paper is to present a novel approach to the design of an autonomous Unmanned Aerial Vehicle (UAV) to aid with the internal inspection and classification of tall or large structures. Focusing mainly on the challenge of robustly determining the position and velocity of the UAV, in three dimensional space, using on‐board Simultaneous Localisation and Mapping (SLAM). Although capable of autonomous flight, the UAV is primarily intended for semi‐autonomous operation, where the operator instructs the UAV where to go. However, if communications with the ground station are lost, it can backtrack along its path until communications are re‐established.

Design/methodology/approach

A UAV has been designed and built using primarily commercial‐off‐the‐shelf components. Software has been developed to allow the UAV to operate autonomously, using solely the on‐board computer and sensors. It is currently undergoing extensive flight tests to determine the performance and limitations of the system as a whole.

Findings

Initial test flights have proven the presented approach and resulting real‐time SLAM algorithms to function robustly in a range of large internals. The paper also briefly discusses the approach used by similar projects and the challenges faced.

Originality/value

The proposed novel algorithms allow for on‐board, real‐time, three‐dimensional SLAM in unknown and unstructured environments on a computationally constrained UAV.

1 – 10 of 13