Search results

1 – 10 of 116
Article
Publication date: 16 May 2016

Stephen Fox

For several decades, national culture has been described as having major influence over international business outcomes. Yet national culture has been framed often by vague terms…

Abstract

Purpose

For several decades, national culture has been described as having major influence over international business outcomes. Yet national culture has been framed often by vague terms and simplistic scales. The purpose of this paper is to explain why and how the influence of national culture should be reframed.

Design/methodology/approach

Review of literature concerned with causation in the behaviour of individuals and groups: anthropology, cognition, psychology, cross-cultural psychology, cultural psychology and cultural geography.

Findings

Within every nationality, and across international business, there is dynamic complexity of thought and action among individuals and groups. This derives from differences of genders, age, cultures, personality types and past experiences; the highly complex interactions between them; their commingling with common traits; and the varying influence of contextual factors. This dynamic complexity cannot be addressed by managers through use of vague simplistic conceptualizations of national culture.

Practical implications

As an alternative to vague simplistic conceptualizations, scientific theories, such as resource-based theory, knowledge-based view, contagion theories and social cognition theory, can be referred to in the formulation of multi-resolution simulation models. These models can enable managers to analyze dynamic complex international business scenarios, in terms of situation-specific variables.

Originality/value

The originality of this paper is that it provides a detailed explanation of why vague simplistic conceptualizations of national culture are of limited usefulness to managers of international business. The value of this paper is that it describes a practical alternative: theory-based multi-resolution simulation models.

Details

Management Research Review, vol. 39 no. 5
Type: Research Article
ISSN: 2040-8269

Keywords

Article
Publication date: 14 March 2019

Lin Fu, Zhe Ji, Xiangyu Y. Hu and Nikolaus A. Adams

This paper aims to develop a parallel fast neighbor search method and communication strategy for particle-based methods with adaptive smoothing-length on distributed-memory…

Abstract

Purpose

This paper aims to develop a parallel fast neighbor search method and communication strategy for particle-based methods with adaptive smoothing-length on distributed-memory computing systems.

Design/methodology/approach

With a multi-resolution-based hierarchical data structure, the parallel neighbor search method is developed to detect and construct ghost buffer particles, i.e. neighboring particles on remote processor nodes. To migrate ghost buffer particles among processor nodes, an undirected graph is established to characterize the sparse data communication relation and is dynamically recomposed. By the introduction of an edge coloring algorithm from graph theory, the complex sparse data exchange can be accomplished within optimized frequency. For each communication substep, only efficient nonblocking point-to-point communication is involved.

Findings

Two demonstration scenarios are considered: fluid dynamics based on smoothed-particle hydrodynamics with adaptive smoothing-length and a recently proposed physics-motivated partitioning method [Fu et al., JCP 341 (2017): 447-473]. Several new concepts are introduced to recast the partitioning method into a parallel version. A set of numerical experiments is conducted to demonstrate the performance and potential of the proposed parallel algorithms.

Originality/value

The proposed methods are simple to implement in large-scale parallel environment and can handle particle simulations with arbitrarily varying smoothing-lengths. The implemented smoothed-particle hydrodynamics solver has good parallel performance, suggesting the potential for other scientific applications.

Article
Publication date: 29 July 2019

Zohreh Heydari, Gholamreza Shobeyri and Seyed Hossein Ghoreishi Najafabadi

This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao…

Abstract

Purpose

This paper aims to examine the accuracy of several higher-order incompressible smoothed particle hydrodynamics (ISPH) Laplacian models and compared with the classic model (Shao and Lo, 2003).

Design/methodology/approach

The numerical errors in solving two-dimensional elliptic partial differential equations using the Laplacian models are investigated for regular and highly irregular node distributions over a unit square computational domain.

Findings

The numerical results show that one of the Laplacian models, which is newly developed by one of the authors (Shobeyri, 2019) can get the smallest errors for various used node distributions.

Originality/value

The newly proposed model is formulated by the hybrid of the standard ISPH Laplacian model combined with Taylor expansion and moving least squares method. The superiority of the proposed model is significant when multi-resolution irregular node distributions commonly seen in adaptive refinement strategies used to save computational cost are applied.

Details

Engineering Computations, vol. 37 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2018

Emmanuel Leveque, Hatem Touil, Satish Malik, Denis Ricot and Alois Sengissen

The Lattice Boltzmann (LB) method offers an alternative to conventional computational fluid dynamics (CFD) methods. However, its practical use for complex turbulent flows of…

Abstract

Purpose

The Lattice Boltzmann (LB) method offers an alternative to conventional computational fluid dynamics (CFD) methods. However, its practical use for complex turbulent flows of engineering interest is still at an early stage. This paper aims to outline an LB wall-modeled large-eddy simulation (WMLES) solver.

Design/methodology/approach

The solver is dedicated to complex high-Reynolds flows in the context of WMLES. It relies on an improved LB scheme and can handle complex geometries on multi-resolution block structured grids.

Findings

Dynamic and acoustic characteristics of a turbulent airflow past a rod-airfoil tandem are examined to test the capabilities of this solver. Detailed direct comparisons are made with both experimental and numerical reference data.

Originality/value

This study allows assessing the potential of an LB approach for industrial CFD applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2010

J.W. Peterson, B.T. Murray and G.F. Carey

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a…

Abstract

Purpose

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a stabilizing concentration gradient and small diffusivity.

Design/methodology/approach

A fully‐coupled stabilized finite element scheme and adaptive mesh refinement (AMR) methodology are introduced to solve the resulting coupled multiphysics application and resolve fine scale solution features. The code is written on top of the open source finite element library LibMesh, and is suitable for parallel, high‐performance simulations of large‐scale problems.

Findings

The stabilized adaptive finite element scheme is used to compute steady and unsteady onset of convection in a generalized Horton‐Rogers‐Lapwood problem in both two and three‐dimensional domains. A detailed study confirming the applicability of AMR in obtaining the predicted dependence of solutal Nusselt number on Lewis number is given. A semi‐permeable barrier version of the generalized HRL problem is also studied and is believed to present an interesting benchmark for AMR codes owing to the different boundary and internal layers present in the problem. Finally, some representative adaptive results in a complex 3D heated‐pipe geometry are presented.

Originality/value

This work demonstrates the feasibility of stabilized, adaptive finite element schemes for computing simple double‐diffusive flow models, and it represents an easily‐generalizable starting point for more complex calculations since it is based on a highly‐general finite element library. The complementary nature of h‐adaptivity and stabilized finite element techniques for this class of problem is demonstrated using particularly simple error indicators and stabilization parameters. Finally, an interesting double‐diffusive convection benchmark problem having a semi‐permeable barrier is suggested.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 April 2021

Emre Yildiz and Charles Møller

The complexity of manufacturing systems, on-going production and existing constraints on the shop floor remain among the main challenges for the analysis, design and development…

Abstract

Purpose

The complexity of manufacturing systems, on-going production and existing constraints on the shop floor remain among the main challenges for the analysis, design and development of the models in product, process and factory domains. The potential of different virtual factory (VF) tools and approaches to support simultaneous engineering for the design, and development of these domains has been addressed in the literature. To fulfil this potential, there is a need for an approach which integrates the product, process and production systems for designing and developing VF and its validation in real-life cases. This paper aims to present an integrated design approach for VF design and development, as well as a demonstration implemented in a wind turbine manufacturing plant.

Design/methodology/approach

As the research calls for instrumental knowledge to discover the effects of intervention on the operations of an enterprise, design science research methodology is considered to be a well-suited methodology for exploring practical usefulness of a generic design to close the theory–practice gap. The study was planned as an exploratory research activity which encompassed the simultaneous design and development of artefacts and retrospective analysis of the design and implementation processes. The extended VF concept, architecture, a demonstration and procedures followed during the research work are presented and evaluated.

Findings

The artefacts (models and methods) and the VF demonstrator, which was evaluated by industry experts and scholars based on the role of the VF in improving the performance in the evaluation and reconfiguration of new or existing factories, reduce the ramp-up and design times, supporting management decisions. Preliminary results are presented and discussed.

Research limitations/implications

The concept VF model, its architecture and general methodology as an integrated design and development approach, can be adopted and used for VF design and development both for discrete and continuous manufacturing plants. The development and demonstration were limited, however, because real-time synchronisation, 3D laser scanning data and a commonly shared data model, to enable the integration of different VF tools, were not achievable.

Originality/value

The paper presents a novel VF concept and architecture, which integrates product, process and production systems. Moreover, design and development methods of the concept and its demonstration for a wind turbine manufacturing plant are presented. The paper, therefore, contributes to the information systems and manufacturing engineering field by identifying a novel concept and approach to the effective design and development of a VF and its function in the analysis, design and development of manufacturing systems.

Details

Journal of Global Operations and Strategic Sourcing, vol. 14 no. 4
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 3 July 2017

Alex A. Schmidt, Alice de Jesus Kozakevicius and Stefan Jakobsson

The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme…

Abstract

Purpose

The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme for solving 2D conservation laws, comparing efficiencies obtained with a previous message passing interface formulation for the same serial scheme and considering the same type of 2D formulations laws.

Design/methodology/approach

The serial version of the code is naturally suitable for parallelization because the spatial operator formulation is based on a splitting scheme per direction for which the flux components are numerically computed by a Lax–Friedrichs factorization independently for each row or column. High-order approximations for numerical fluxes are computed by the third-order essentially non-oscillatory (ENO) and fifth-order weighted essentially non-oscillatory (WENO) interpolation schemes, assuming sparse grids in each direction. The grid adaptivity is obtained by a cubic interpolating wavelet transform applied in each space dimension, associated to a threshold operator. Time is evolved by a third order TVD Runge–Kutta method.

Findings

The parallel formulation is implemented automatically at compiling time by the OpenMP library routines, being virtually transparent to the programmer. This over simplifies any concerns about managing and/or updating the adaptive grid when compared to what is necessary to be done when other parallel approaches are considered. Numerical simulations results and the large speedups obtained for the Euler equations in gas dynamics highlight the efficiency of the OpenMP approach.

Research limitations/implications

The resulting speedups reflect the effectiveness of the OpenMP approach but are, to a large extension, limited by the hardware used (2 E5-2620 Intel Xeon processors, 6 cores, 2 threads/core, hyper-threading enabled). As the demand for OpenMP threads increases, the code starts to make explicit use of the second logical thread available in each E5-2620 processor core and efficiency drops. The speedup peak is reached near the possible maximum (24) at about 22, 23 threads. This peak reflects the hardware configuration and the true software limit should be located way beyond this value.

Practical implications

So far no attempts have been made to parallelize other possible code segments (for instance, the ENO|-WENO-TVD code lines that process the different data components which could potentially push the speed up limit to higher values even further. The fact that the speedup peak is located close to the present hardware limit reflects the scalability properties of the OpenMP programming and of the splitting scheme as well. Consequently, it is likely that the speedup peak with the OpenMP approach for this kind of problem formulation will be close to the physical (and/or logical) limit of the hardware used.

Social implications

This work is the result of a successful collaboration among researchers from two different institutions, one internationally well-known and with a long-term experience in applied mathematics for industrial applications and the other in a starting process of international academic insertion. In this way, this scientific partnership has the potential of promoting further knowledge exchange, involving students and other collaborators.

Originality/value

The proposed methodology (use of OpenMP programming model for the wavelet adaptive splitting scheme) is original and contributes to a very active research area in the past years, namely, adaptive methods for conservation laws and their parallel formulations, which is of great interest for the entire scientific community.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2015

Jian Zhang, Xiao-Hua Yang and Yu-Qi Li

The purpose of this paper is to accurately simulate and predict the daily extreme temperature in Beijing Reservoir and the monthly extreme temperature in Tianjin Reservoir using…

Abstract

Purpose

The purpose of this paper is to accurately simulate and predict the daily extreme temperature in Beijing Reservoir and the monthly extreme temperature in Tianjin Reservoir using wavelet refined rank set pair analysis (WRRSPA).

Design/methodology/approach

The new method, called WRRSPA, which combines wavelet analysis and refined rank set pair analysis (RRSPA), was proposed for use in this study because of the non-linear and multi-time scale characteristics of the temperature series. The model includes the advantages of the multi-resolution feature of wavelet analysis and the non-parametric data-driven prediction from refined rank set air analysis.

Findings

Based on the daily extreme temperature of Beijing Reservoir, the predictions of the last 18 days reveal that WRRSPA is more appropriate because the percentage of the relative errors that are smaller than 10 percent increased from 78 percent by Back Propagation (BP) and 78 percent by RRSPA to 100 percent by WRRSPA in Beijing Reservoir. In addition, WRRSPA has lower values of root mean squared error (RMSE) and mean absolute error (MAE) and a higher coefficient of efficiency (modified coefficient of efficiency (MCE)). The last 12 monthly extreme temperature predictions of Tianjin Reservoir demonstrate that WRRSPA produces prediction results: the percentage of relative errors that are smaller than 10 percent are improved from 34 percent by BP and 58 percent by RRSPA to 67 percent by WRRSPA. In addition, WRRSPA also has lower values of RMSE and MAE and a higher coefficient of efficiency (MCE).

Research limitations/implications

The analysis results ignore the physical processes and may be affected by the limited observation data. In addition, the WRRSPA method is still in its early stages of application and must be further tested.

Practical implications

The results of the study are helpful for the study of the complex features and accurate prediction of temperature series.

Social implications

This paper contributes to further the process of research of climate change.

Originality/value

This study represents the first use of the WRRSPA method to analyze the multi-scale characteristics and forecast the future values of the extreme temperature series from Beijing Reservoir and Tianjin Reservoir. This paper provides an important theoretical support for extreme temperature prediction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 August 2011

Olympia Panagouli and Euripidis Mistakidis

The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the contact interfacial stresses. The study is based on a numerical approach. The paper focuses on the differences between the cases of elastic and inelastic materials having as primary parameter the resolution of the interface.

Design/methodology/approach

A multi‐resolution parametric analysis is performed for fractal interfaces dividing a plane structure into two parts. On these interfaces, unilateral contact conditions are assumed to hold. The computer‐generated surfaces adopted here are self‐affine curves, characterized by a precise value of the resolution δ of the fractal set. Different contact simulations are studied by applying a horizontal displacement s on the upper part of the structure. For every value of s, a solution is taken in terms of normal forces and displacements at the interface. The procedure is repeated for different values of the resolution δ. At each scale, a classical Euclidean problem is solved by using finite element models. In the limit of the finest resolution, fractal behaviour is achieved.

Findings

The paper leads to a number of interesting conclusions. In the case of linear elastic analysis, the contact area and, consequently, the contact interfacial stresses depend strongly on the resolution of the fractal interface. Contrary, in the case of inelastic analysis, this dependence is verified only for the lower resolution values. As the resolution becomes higher, the contact area tends to become independent from the resolution.

Originality/value

The originality of the paper lies on the results and the corresponding conclusions obtained for the case of inelastic material behaviour, while the results for the case of elastic analysis verify the findings of other researchers.

1 – 10 of 116