Search results

1 – 10 of 659
Article
Publication date: 13 October 2023

Wenxue Wang, Qingxia Li and Wenhong Wei

Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community…

Abstract

Purpose

Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community detection in dynamic networks is evolutionary clustering, which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals. However, the error accumulation issues limit the effectiveness of evolutionary clustering. While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework, the traditional multi-objective evolutionary approach lacks self-adaptability.

Design/methodology/approach

This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods. In this approach, a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting.

Findings

Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets.

Originality/value

To enhance the clustering results, adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D (A Multiobjective Optimization Evolutionary Algorithm based on Decomposition) to dynamically adjust the focus of different evolutionary stages.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 22 June 2023

Simon Bagy, Michel Libsig, Bastien Martinez and Baptiste Masse

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Abstract

Purpose

This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition.

Design/methodology/approach

The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations.

Findings

Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions.

Research limitations/implications

The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach.

Originality/value

To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2024

S. P. Sreenivas Padala and Prabhanjan M. Skanda

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early…

Abstract

Purpose

The purpose of this paper is to develop a building information modelling (BIM)-based multi-objective optimization (MOO) framework for volumetric analysis of buildings during early design stages. The objective is to optimize volumetric spaces (3D) instead of 2D spaces to enhance space utilization, thermal comfort, constructability and rental value of buildings

Design/methodology/approach

The integration of two fundamental concepts – BIM and MOO, forms the basis of proposed framework. In the early design phases of a project, BIM is used to generate precise building volume data. The non-sorting genetic algorithm-II, a MOO algorithm, is then used to optimize extracted volume data from 3D BIM models, considering four objectives: space utilization, thermal comfort, rental value and construction cost. The framework is implemented in context of a school of architecture building project.

Findings

The findings of case study demonstrate significant improvements resulting from MOO of building volumes. Space utilization increased by 30%, while thermal comfort improved by 20%, and construction costs were reduced by 10%. Furthermore, rental value of the case study building increased by 33%.

Practical implications

The proposed framework offers practical implications by enabling project teams to generate optimal building floor layouts during early design stages, thereby avoiding late costly changes during construction phase of project.

Originality/value

The integration of BIM and MOO in this study provides a unique approach to optimize building volumes considering multiple factors during early design stages of a project

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 January 2024

Pengyun Zhao, Shoufeng Ji and Yuanyuan Ji

This paper aims to introduce a novel structure for the physical internet (PI)–enabled sustainable supplier selection and inventory management problem under uncertain environments.

Abstract

Purpose

This paper aims to introduce a novel structure for the physical internet (PI)–enabled sustainable supplier selection and inventory management problem under uncertain environments.

Design/methodology/approach

To address hybrid uncertainty both in the objective function and constraints, a novel interactive hybrid multi-objective optimization solution approach combining Me-based fuzzy possibilistic programming and interval programming approaches is tailored.

Findings

Various numerical experiments are introduced to validate the feasibility of the established model and the proposed solution method.

Originality/value

Due to its interconnectedness, the PI has the opportunity to support firms in addressing sustainability challenges and reducing initial impact. The sustainable supplier selection and inventory management have become critical operational challenges in PI-enabled supply chain problems. This is the first attempt on this issue, which uses the presented novel interactive possibilistic programming method.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 September 2023

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Ramón Quiza, Ignacio Jeria and Carolina Guerra

316 L stainless steel alloy is potentially the most used material in the selective laser melting (SLM) process because of its versatility and broad fields of applications (e.g…

Abstract

Purpose

316 L stainless steel alloy is potentially the most used material in the selective laser melting (SLM) process because of its versatility and broad fields of applications (e.g. medical devices, tooling, automotive, etc.). That is why producing fully functional parts through optimal printing configuration is still a key issue to be addressed. This paper aims to present an entirely new framework for simultaneously reducing surface roughness (SR) while increasing the material processing rate in the SLM process of 316L stainless steel, keeping fundamental mechanical properties within their allowable range.

Design/methodology/approach

Considering the nonlinear relationship between the printing parameters and features analyzed in the entire experimental space, machine learning and statistical modeling methods were defined to describe the behavior of the selected variables in the as-built conditions. First, the Box–Behnken design was adopted and corresponding experimental planning was conducted to measure the required variables. Second, the relationship between the laser power, scanning speed, hatch distance, layer thickness and selected responses was modeled using empirical methods. Subsequently, three heuristic algorithms (nonsorting genetic algorithm, multi-objective particle swarm optimization and cross-entropy method) were used and compared to search for the Pareto solutions of the formulated multi-objective problem.

Findings

A minimum SR value of approximately 12.83 μm and a maximum material processing rate of 2.35 mm3/s were achieved. Finally, some verification experiments recommended by the decision-making system implemented strongly confirmed the reliability of the proposed optimization methodology by providing the ultimate part qualities and their mechanical properties nearly identical to those defined in the literature, with only approximately 10% of error at the maximum.

Originality/value

To the best of the authors’ knowledge, this is the first study dealing with an entirely different and more comprehensive approach for optimizing the 316 L SLM process, embedding it in a unique framework of mechanical and surface properties and material processing rate.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2023

Alireza Arab, Mohammad Ali Sheikholislam and Saeid Abdollahi Lashaki

The purpose of this paper is to review studies on mathematical optimization of the sustainable gasoline supply chain to help decision-makers understand the current situation, the…

Abstract

Purpose

The purpose of this paper is to review studies on mathematical optimization of the sustainable gasoline supply chain to help decision-makers understand the current situation, the exact dimensions of the problem and the models provided in the literature. So, a more realistic mathematical optimization model can be achieved by fully covering all dimensions of the supply chain of this product.

Design/methodology/approach

To evaluate and comprehend the mathematical optimization of the sustainable gasoline supply chain research area, a systematic literature review is undertaken that covers material collection, descriptive analysis, content analysis and material evaluation steps. Finally, based on this process, 69 related articles were carefully investigated.

Findings

The results of the systematic literature review show the main areas of the published papers on mathematical optimization of sustainable gasoline supply chain problems and the gaps for future research in this field presented based on them.

Research limitations/implications

This approach is subject to limitations because the protocol of the systematic review of the research literature only included searching for the considered combination of keywords in the Scopus and ProQuest databases. Furthermore, the protocol used in this paper restricts documents to English.

Practical implications

The results have significant implications for both academicians and practitioners in this field. It can be useful for academics to comprehend the gaps and future trends in this field. Also, for practitioners, it can be useful to identify and understand the parts of the mathematical optimization model, which can help them model this problem effectively and efficiently.

Originality/value

No systematic literature review has been done in this field by considering gasoline to the best of the authors’ knowledge and delivers new facts for the future development of this field.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 12 September 2023

Kemal Subulan and Adil Baykasoğlu

The purpose of this study is to develop a holistic optimization model for an integrated sustainable fleet planning and closed-loop supply chain (CLSC) network design problem under…

Abstract

Purpose

The purpose of this study is to develop a holistic optimization model for an integrated sustainable fleet planning and closed-loop supply chain (CLSC) network design problem under uncertainty.

Design/methodology/approach

A novel mixed-integer programming model that is able to consider interactions between vehicle fleet planning and CLSC network design problems is first developed. Uncertainties of the product demand and return fractions of the end-of-life products are handled by a chance-constrained stochastic program. Several Pareto optimal solutions are generated for the conflicting sustainability objectives via compromise and fuzzy goal programming (FGP) approaches.

Findings

The proposed model is tested on a real-life lead/acid battery recovery system. By using the proposed model, sustainable fleet plans that provide a smaller fleet size, fewer empty vehicle repositions, minimal CO2 emissions, maximal vehicle safety ratings and minimal injury/illness incidence rate of transport accidents are generated. Furthermore, an environmentally and socially conscious CLSC network with maximal job creation in the less developed regions, minimal lost days resulting from the work's damages during manufacturing/recycling operations and maximal collection/recovery of end-of-life products is also designed.

Originality/value

Unlike the classical network design models, vehicle fleet planning decisions such as fleet sizing/composition, fleet assignment, vehicle inventory control, empty repositioning, etc. are also considered while designing a sustainable CLSC network. In addition to sustainability indicators in the network design, sustainability factors in fleet management are also handled. To the best of the authors' knowledge, there is no similar paper in the literature that proposes such a holistic optimization model for integrated sustainable fleet planning and CLSC network design.

Open Access
Article
Publication date: 19 July 2022

Ilkan Sarigol, Rifat Gurcan Ozdemir and Erkan Bayraktar

This paper focuses on multi-objective order allocation with product substitution for the vaccine supply chain under uncertainty.

Abstract

Purpose

This paper focuses on multi-objective order allocation with product substitution for the vaccine supply chain under uncertainty.

Design/methodology/approach

The weighted-sum minimization approach is used to find a compromised solution between three objectives of minimizing inefficiently vaccinated people, postponed vaccinations, and purchasing costs. A mixed-integer formulation with substitution quantities is proposed, subject to capacity and demand constraints. The substitution ratios between vaccines are assumed to be exogenous. Besides, uncertainty in supplier reliability is formulated using optimistic, most likely, and pessimistic scenarios in the proposed optimization model.

Findings

Covid-19 vaccine supply chain process is studied for one government and three vaccine suppliers as an illustrative example. The results provide essential insights for the governments to have proper vaccine allocation and support governments to manage the Covid-19 pandemic.

Originality/value

This paper considers the minimization of postponement in vaccination plans and inefficient vaccination and purchasing costs for order allocation among different vaccine types. To the best of the authors’ knowledge, there is no study in the literature on order allocation of vaccine types with substitution. The analytical hierarchy process structure of the Covid-19 pandemic also contributes to the literature.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 13 no. 2
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 27 June 2023

Mostafa Alani and Akel Kahera

This study explores the potential of computational design processes in creating contextually responsive envelopes for high-rise residential buildings in the Middle East. This…

Abstract

Purpose

This study explores the potential of computational design processes in creating contextually responsive envelopes for high-rise residential buildings in the Middle East. This includes considering both physical constraints and social preferences, with a focus on balancing sunlight exposure, privacy and views.

Design/methodology/approach

A two-phase simulation study analyzed various exterior envelope systems in Baghdad high-rise buildings. The first phase examined two commonly used exterior envelopes – fully glazed and window-based – to assess sunlight exposure, privacy and views. In the second phase, a multi-objective optimization process was applied to derive contextually optimized design solutions addressing the challenges identified in the first phase.

Findings

The study reveals that contextually optimized design solutions significantly improved direct sunlight exposure and privacy while maintaining satisfactory views. Although fully glazed exterior envelopes provided better-uninterrupted views, the optimized solutions offered more balanced performance across all factors, demonstrating the potential of computational design processes in creating contextually responsive building envelopes.

Originality/value

This paper emphasizes the importance of considering both physical and social contexts in the development of algorithms for architecture in the Middle East. This paper supports a progressive interpretation of traditional building references and demonstrates how computational design processes can create contextually responsive building envelopes that satisfy social needs and provide better-performing buildings for inhabitants.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 18 January 2024

Shiba Hessami, Hamed Davari-Ardakani, Youness Javid and Mariam Ameli

This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to…

Abstract

Purpose

This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to minimize the total completion time and the total cost of the project simultaneously.

Design/methodology/approach

To deal with the problem under consideration, a bi-objective optimization model is developed. All activities are interconnected by finish-start precedence relations, and pre-emption is not allowed. Then, the ɛ-constraint optimization method is used to solve 24 different-sized instances, ranging from 5 to 120 activities, and report the makespan, total cost and CPU time. A set of Pareto-optimal solutions are determined for some instances, and sensitivity analyses are performed to find the impact of changing parameters on objective values.

Findings

Results highlight the importance of resource transportability assumption on project completion time and cost, providing useful insights for decision makers and practitioners.

Originality/value

A novel bi-objective optimization model is proposed to deal with the multi-site MRCPSP, considering both the cost and time of resource transportation between multiple sites. To the best of the authors’ knowledge, none of the studies in the project scheduling area has yet addressed this problem.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

1 – 10 of 659