Search results

1 – 10 of 18
Open Access
Article
Publication date: 4 December 2023

Yonghua Li, Zhe Chen, Maorui Hou and Tao Guo

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Abstract

Purpose

This study aims to reduce the redundant weight of the anti-roll torsion bar brought by the traditional empirical design and improving its strength and stiffness.

Design/methodology/approach

Based on the finite element approach coupled with the improved beluga whale optimization (IBWO) algorithm, a collaborative optimization method is suggested to optimize the design of the anti-roll torsion bar structure and weight. The dimensions and material properties of the torsion bar were defined as random variables, and the torsion bar's mass and strength were investigated using finite elements. Then, chaotic mapping and differential evolution (DE) operators are introduced to improve the beluga whale optimization (BWO) algorithm and run case studies.

Findings

The findings demonstrate that the IBWO has superior solution set distribution uniformity, convergence speed, solution correctness and stability than the BWO. The IBWO algorithm is used to optimize the anti-roll torsion bar design. The error between the optimization and finite element simulation results was less than 1%. The weight of the optimized anti-roll torsion bar was lessened by 4%, the maximum stress was reduced by 35% and the stiffness was increased by 1.9%.

Originality/value

The study provides a methodological reference for the simulation optimization process of the lateral anti-roll torsion bar.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 3 December 2019

Masoud Kavoosi, Maxim A. Dulebenets, Olumide Abioye, Junayed Pasha, Oluwatosin Theophilus, Hui Wang, Raphael Kampmann and Marko Mikijeljević

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting…

1554

Abstract

Purpose

Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT.

Design/methodology/approach

A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands.

Findings

The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s.

Research limitations/implications

Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic.

Practical implications

The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time.

Originality/value

A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions.

Open Access
Article
Publication date: 9 July 2021

Jianran Liu, Bing Liang and Wen Ji

Artificial intelligence is gradually penetrating into human society. In the network era, the interaction between human and artificial intelligence, even between artificial…

Abstract

Purpose

Artificial intelligence is gradually penetrating into human society. In the network era, the interaction between human and artificial intelligence, even between artificial intelligence, becomes more and more complex. Therefore, it is necessary to describe and intervene the evolution of crowd intelligence network dynamically. This paper aims to detect the abnormal agents at the early stage of intelligent evolution.

Design/methodology/approach

In this paper, differential evolution (DE) and K-means clustering are used to detect the crowd intelligence with abnormal evolutionary trend.

Findings

This study abstracts the evolution process of crowd intelligence into the solution process of DE and use K-means clustering to identify individuals who are not conducive to evolution in the early stage of intelligent evolution.

Practical implications

Experiments show that the method we proposed are able to find out individual intelligence without evolutionary trend as early as possible, even in the complex crowd intelligent interactive environment of practical application. As a result, it can avoid the waste of time and computing resources.

Originality/value

In this paper, DE and K-means clustering are combined to analyze the evolution of crowd intelligent interaction.

Details

International Journal of Crowd Science, vol. 5 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2078

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 11 April 2018

Mohamed A. Tawhid and Kevin B. Dsouza

In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed algorithm

Abstract

In this paper, we present a new hybrid binary version of bat and enhanced particle swarm optimization algorithm in order to solve feature selection problems. The proposed algorithm is called Hybrid Binary Bat Enhanced Particle Swarm Optimization Algorithm (HBBEPSO). In the proposed HBBEPSO algorithm, we combine the bat algorithm with its capacity for echolocation helping explore the feature space and enhanced version of the particle swarm optimization with its ability to converge to the best global solution in the search space. In order to investigate the general performance of the proposed HBBEPSO algorithm, the proposed algorithm is compared with the original optimizers and other optimizers that have been used for feature selection in the past. A set of assessment indicators are used to evaluate and compare the different optimizers over 20 standard data sets obtained from the UCI repository. Results prove the ability of the proposed HBBEPSO algorithm to search the feature space for optimal feature combinations.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 8 August 2019

Sohail R. Reddy, Matthias K. Scharrer, Franz Pichler, Daniel Watzenig and George S. Dulikravich

This paper aims to solve the parameter identification problem to estimate the parameters in electrochemical models of the lithium-ion battery.

1945

Abstract

Purpose

This paper aims to solve the parameter identification problem to estimate the parameters in electrochemical models of the lithium-ion battery.

Design/methodology/approach

The parameter estimation framework is applied to the Doyle-Fuller-Newman (DFN) model containing a total of 44 parameters. The DFN model is fit to experimental data obtained through the cycling of Li-ion cells. The parameter estimation is performed by minimizing the least-squares difference between the experimentally measured and numerically computed voltage curves. The minimization is performed using a state-of-the-art hybrid minimization algorithm.

Findings

The DFN model parameter estimation is performed within 14 h, which is a significant improvement over previous works. The mean absolute error for the converged parameters is less than 7 mV.

Originality/value

To the best of the authors’ knowledge, application of a hybrid optimization framework is new in the field of electrical modelling of lithium-ion cells. This approach saves much time in parameterization of models with a high number of parameters while achieving a high-quality fit.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 1 August 2016

Wenqi Jiang

Different from manufacturing resources allocation problems, the prices and amounts of limited public service resources could not be changed with the consumers’ requirements and…

1601

Abstract

Purpose

Different from manufacturing resources allocation problems, the prices and amounts of limited public service resources could not be changed with the consumers’ requirements and social fairness is the most important objective for improving allocation efficiency. To measure social fairness reasonably, the purpose of this paper is fourfold: first, divide social fairness into longitudinal comparative fairness and crosswise comparative fairness, therefore providing their calculation formula and describing the comprehensive fair degree by using the interval numbers. Second, the comparison regulations of interval numbers are given and the corresponding features are also described. Third, an extension of VIKOR method is put forward for evaluating social fairness of different allocation alternatives with interval numbers. Finally, a numerical example illustrates the proposed method and clarifies the main results developed in the paper.

Design/methodology/approach

In this paper, the author depicts the social fair degree as an interval number, and thus proposes the comparison method between any two interval numbers. Based on the basis procedure of the VIKOR method, the paper proposes an extension of the fuzzy VIKOR method with the interval numbers to rank and select the compromise allocation alternatives. Finally, a numerical example illustrates the practicability of the proposed method.

Findings

The comparison of interval numbers is very important when the author evaluates the decision alternatives. Through analyzing the present comparison methods, the paper proposes the simple method of comparing the interval numbers, which can obtain the same results with the above two methods. The fuzzy VIKOR method, a popular multi-criteria decision-making method, focusses on ranking and selecting from a set of alternatives in a fuzzy environment. For the fuzzy value, the paper also proposes the extension of the VIKOR method to perform an evaluation and get the compromise alternatives.

Originality/value

According to the huge customers’ requirement, how to improve their social fair degree has become the focus in public service resources allocation, where the social fair degree may be a comprehensive concept which includes the fair degree compared with all the other allocation alternatives and the fair degree compared with the other small group under the same allocation alternative. In the paper, the author defines the above two types of fair degree and then depicts the comprehensive fair degree as their integration, which will be interval numbers.

Details

Kybernetes, vol. 45 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 21 March 2022

Maisam Abbasi and Liz Varga

The purpose of this research is to systematically review the properties of supply chains demonstrating that they are complex systems, and that the management of supply chains is…

2826

Abstract

Purpose

The purpose of this research is to systematically review the properties of supply chains demonstrating that they are complex systems, and that the management of supply chains is best achieved by steering rather than controlling these systems toward desired outcomes.

Design/methodology/approach

The research study was designed as both exploratory and explanatory. Data were collected from secondary sources using a comprehensive literature review process. In parallel with data collection, data were analyzed and synthesized.

Findings

The main finding is the introduction of an inductive framework for steering supply chains from a complex systems perspective by explaining why supply chains have properties of complex systems and how to deal with their complexity while steering them toward desired outcomes. Complexity properties are summarized in four inter-dependent categories: Structural, Dynamic, Behavioral and Decision making, which together enable the assessment of supply chains as complex systems. Furthermore, five mechanisms emerged for dealing with the complexity of supply chains: classification, modeling, measurement, relational analysis and handling.

Originality/value

Recognizing that supply chains are complex systems allows for a better grasp of the effect of positive feedback on change and transformation, and also interactions leading to dynamic equilibria, nonlinearity and the role of inter-organizational learning, as well as emerging capabilities, and existing trade-offs and paradoxical tensions in decision-making. It recognizes changing dynamics and the co-evolution of supply chain phenomena in different scales and contexts.

Details

European Journal of Management Studies, vol. 27 no. 1
Type: Research Article
ISSN: 2183-4172

Keywords

Open Access
Article
Publication date: 10 January 2020

Slawomir Koziel and Anna Pietrenko-Dabrowska

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is…

Abstract

Purpose

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna.

Design/methodology/approach

The keystone of the proposed approach is the usage of recently introduced nested kriging modeling for identifying the design space region containing the Pareto front and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even though the optimization process uses solely high-fidelity electromagnetic (EM) analysis.

Findings

The optimization cost is dramatically reduced for the proposed framework as compared to other state-of-the-art frameworks. The initial Pareto set is identified more precisely (its span is wider and of better quality), which is a result of a considerably smaller domain of the nested kriging model and better predictive power of the surrogate.

Research limitations/implications

The proposed technique can be generalized to accommodate low- and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-fidelity simulations to further reduce the cost of the training data acquisition.

Originality/value

The fast MO optimization procedure with the use of the nested kriging modeling technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 18