Search results

21 – 30 of 445
Article
Publication date: 6 February 2017

Amir Nourmohammadi and Hamidreza Eskandari

This paper aims to optimize the configuration of assembly lines (ALs) considering the two long-term decision problems within the line balancing and part feeding (PF) contexts…

Abstract

Purpose

This paper aims to optimize the configuration of assembly lines (ALs) considering the two long-term decision problems within the line balancing and part feeding (PF) contexts, when the supermarket concept is applied in PF.

Design/methodology/approach

To this purpose, a bi-level mathematical model is proposed to deal with the assembly line balancing problem (ALBP) and supermarket location problem (SLP) during the strategic decision-making phase of ALs’ configuration. The proposed model is applied on the known test problems taken from the ALBP literature to verify its performance.

Findings

The computational results verify that when the proposed structure is applied, the resulting AL configurations are optimized from both ALBP and SLP considerations in terms of the number of stations and line efficiency as well as supermarket transportation and installation costs.

Originality/value

No study has yet dealt with the long-term decision problem of configuring ALs considering both ALBP and SLP. Also, this study validates the effect of the ALBP on the SLP solutions as two long-term interrelated decision problems.

Details

Assembly Automation, vol. 37 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 May 2020

Abhishek Dixit, Ashish Mani and Rohit Bansal

Feature selection is an important step for data pre-processing specially in the case of high dimensional data set. Performance of the data model is reduced if the model is trained…

Abstract

Purpose

Feature selection is an important step for data pre-processing specially in the case of high dimensional data set. Performance of the data model is reduced if the model is trained with high dimensional data set, and it results in poor classification accuracy. Therefore, before training the model an important step to apply is the feature selection on the dataset to improve the performance and classification accuracy.

Design/methodology/approach

A novel optimization approach that hybridizes binary particle swarm optimization (BPSO) and differential evolution (DE) for fine tuning of SVM classifier is presented. The name of the implemented classifier is given as DEPSOSVM.

Findings

This approach is evaluated using 20 UCI benchmark text data classification data set. Further, the performance of the proposed technique is also evaluated on UCI benchmark image data set of cancer images. From the results, it can be observed that the proposed DEPSOSVM techniques have significant improvement in performance over other algorithms in the literature for feature selection. The proposed technique shows better classification accuracy as well.

Originality/value

The proposed approach is different from the previous work, as in all the previous work DE/(rand/1) mutation strategy is used whereas in this study DE/(rand/2) is used and the mutation strategy with BPSO is updated. Another difference is on the crossover approach in our case as we have used a novel approach of comparing best particle with sigmoid function. The core contribution of this paper is to hybridize DE with BPSO combined with SVM classifier (DEPSOSVM) to handle the feature selection problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 February 2006

Hui‐Yuan Fan, Jouni Lampinen and Yeshayahou Levy

To present and validate a new differential evolution (DE) method for multi‐objective optimization method.

Abstract

Purpose

To present and validate a new differential evolution (DE) method for multi‐objective optimization method.

Design/methodology/approach

A new selection scheme was designed to replace the existing one in DE to enable DE applicable to either single objective or multi‐objective optimizations.

Findings

The new method was validated with three simple multi‐objective optimization problems. The simulation results show that the approach is capable of generating an approximated Pareto‐front for each selected problem. The new DE method was used to optimize a prototype air mixer subject to two objective functions to be minimized. The results demonstrate that the new DE approach can handle this practical multi‐objective problem successfully.

Originality/value

The new method is an easy‐to‐implement evolutionary method and has the potential for application for any complicated engineering optimizations.

Details

Engineering Computations, vol. 23 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 June 2021

Xue Deng, Xiaolei He and Cuirong Huang

This paper proposes a fuzzy random multi-objective portfolio model with different entropy measures and designs a hybrid algorithm to solve the proposed model.

Abstract

Purpose

This paper proposes a fuzzy random multi-objective portfolio model with different entropy measures and designs a hybrid algorithm to solve the proposed model.

Design/methodology/approach

Because random uncertainty and fuzzy uncertainty are often combined in a real-world setting, the security returns are considered as fuzzy random numbers. In the model, the authors also consider the effects of different entropy measures, including Yager's entropy, Shannon's entropy and min-max entropy. During the process of solving the model, the authors use a ranking method to convert the expected return into a crisp number. To find the optimal solution efficiently, a fuzzy programming technique based on artificial bee colony (ABC) algorithm is also proposed.

Findings

(1) The return of optimal portfolio increases while the level of investor risk aversion increases. (2) The difference of the investment weights of the optimal portfolio obtained with Yager's entropy are much smaller than that of the min–max entropy. (3) The performance of the ABC algorithm on solving the proposed model is superior than other intelligent algorithms such as the genetic algorithm, differential evolution and particle swarm optimization.

Originality/value

To the best of the authors' knowledge, no effect has been made to consider a fuzzy random portfolio model with different entropy measures. Thus, the novelty of the research is constructing a fuzzy random multi-objective portfolio model with different entropy measures and designing a hybrid fuzzy programming-ABC algorithm to solve the proposed model.

Details

Engineering Computations, vol. 39 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 May 2018

Masood Fathi, Dalila Benedita Machado Martins Fontes, Matias Urenda Moris and Morteza Ghobakhloo

The purpose of this study is to first investigate the efficiency of the most commonly used performance measures for minimizing the number of workstations (NWs) in approaches…

1563

Abstract

Purpose

The purpose of this study is to first investigate the efficiency of the most commonly used performance measures for minimizing the number of workstations (NWs) in approaches addressing simple assembly line balancing problem (SALBP) for both straight and U-shaped line, and second to provide a comparative evaluation of 20 constructive heuristics to find solutions to the SALBP-1.

Design/methodology/approach

A total of 200 problems are solved by 20 different constructive heuristics for both straight and U-shaped assembly line. Moreover, several comparisons have been made to evaluate the performance of constructive heuristics.

Findings

Minimizing the smoothness index is not necessarily equivalent to minimizing the NWs; therefore, it should not be used as the fitness function in approaches addressing the SALBP-1. Line efficiency and the idle time are indeed reliable performance measures for minimizing the NWs. The most promising heuristics for straight and U-shaped line configurations for SALBP-1 are also ranked and introduced.

Practical implications

Results are expected to help scholars and industrial practitioners to better design effective solution methods for having the most balanced assembly line. This study will further help with choosing the most proper heuristic with regard to the problem specifications and line configuration.

Originality/value

There is limited research assessing the efficiency of the common objectives for SALBP-1. This study is among the first to prove that minimizing the workload smoothness is not equivalent to minimizing the NWs in SALBP-1 studies. This work is also one of the first attempts for evaluating the constructive heuristics for both straight and U-shaped line configurations.

Details

Journal of Modelling in Management, vol. 13 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 15 April 2022

Binghai Zhou, Jihua Zhang and Qianran Fei

Facing the challenge of increasing energy cost and requirement of reducing the emissions, identifying the potential factors of them in the manufacturing factories is an important…

Abstract

Purpose

Facing the challenge of increasing energy cost and requirement of reducing the emissions, identifying the potential factors of them in the manufacturing factories is an important prerequisite to control energy consumption. This paper aims to present a bi-objective green in-house transportation scheduling and fleet size determination problem (BOGIHTS&FSDP) in automobile assembly line to schedule the material delivery tasks, which jointly take the energy consumption into consideration as well.

Design/methodology/approach

This research proposes an optimal method for material handling in automobile assembly line. To solve the problem, several properties and definitions are proposed to solve the model more efficiently. Because of the non-deterministic polynomial-time-hard nature of the proposed problem, a Multi-objective Discrete Differential Evolution Algorithm with Variable Neighborhood Search (VNS-MDDE) is developed to solve the multi-objective problem.

Findings

The performances of VNS-MDDE are evaluated in simulation and the results indicate that the proposed algorithm is effective and efficient in solving BOGIHTS&FSDP problem.

Originality/value

This study is the first to take advantage of the robot's interactive functions for part supply in automobile assembly lines, which is both the challenge and trend of future intelligent logistics under the pressure of energy and resource. To solve the problem, a VNS-MDDE is developed to solve the multi-objective problem.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 2019

Arulraj Rajendran and Kumarappan Narayanan

This paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as…

Abstract

Purpose

This paper aims to optimally plan distributed generation (DG) and capacitor in distribution network by optimizing multiple conflicting operational objectives simultaneously so as to achieve enhanced operation of distribution system. The multi-objective optimization problem comprises three important objective functions such as minimization of total active power loss (Plosstotal), reduction of voltage deviation and balancing of current through feeder sections.

Design/methodology/approach

In this study, a hybrid configuration of weight improved particle swarm optimization (WIPSO) and gravitational search algorithm (GSA) called hybrid WIPSO-GSA algorithm is proposed in multi-objective problem domain. To solve multi-objective optimization problem, the proposed hybrid WIPSO-GSA algorithm is integrated with two components. The first component is fixed-sized archive that is responsible for storing a set of non-dominated pareto optimal solutions and the second component is a leader selection strategy that helps to update and identify the best compromised solution from the archive.

Findings

The proposed methodology is tested on standard 33-bus and Indian 85-bus distribution systems. The results attained using proposed multi-objective hybrid WIPSO-GSA algorithm provides potential technical and economic benefits and its best compromised solution outperforms other commonly used multi-objective techniques, thereby making it highly suitable for solving multi-objective problems.

Originality/value

A novel multi-objective hybrid WIPSO-GSA algorithm is proposed for optimal DG and capacitor planning in radial distribution network. The results demonstrate the usefulness of the proposed technique in improved distribution system planning and operation and also in achieving better optimized results than other existing multi-objective optimization techniques.

Details

International Journal of Energy Sector Management, vol. 13 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 19 May 2022

Merlin Sajini M.L., Suja S. and Merlin Gilbert Raj S.

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by…

Abstract

Purpose

The purpose of the study is distributed generation planning in a radial delivery framework to identify an appropriate location with a suitable rating of DG units energized by renewable energy resources to scale back the power loss and to recover the voltage levels. Though several algorithms have already been proposed through the target of power loss reduction and voltage stability enhancement, further optimization of the objectives is improved by using a combination of heuristic algorithms like DE and particle swarm optimization (PSO).

Design/methodology/approach

The identification of the candidate buses for the location of DG units and optimal rating of DG units is found by a combined differential evolution (DE) and PSO algorithm. In the combined strategy of DE and PSO, the key merits of both algorithms are combined. The DE algorithm prevents the individuals from getting trapped into the local optimum, thereby providing efficient global optimization. At the same time, PSO provides a fast convergence rate by providing the best particle among the entire iteration to obtain the best fitness value.

Findings

The proposed DE-PSO takes advantage of the global optimization of DE and the convergence rate of PSO. The different case studies of multiple DG types are carried out for the suggested procedure for the 33- and 69-bus radial delivery frameworks and a real 16-bus distribution substation in Tamil Nadu to show the effectiveness of the proposed methodology and distribution system performance. From the obtained results, there is a substantial decrease in the power loss and an improvement of voltage levels across all the buses of the system, thereby maintaining the distribution system within the framework of system operation and safety constraints.

Originality/value

A comparison of an equivalent system with the DE, PSO algorithm when used separately and other algorithms available in literature shows that the proposed method results in an improved performance in terms of the convergence rate and objective function values. Finally, an economic benefit analysis is performed if a photo-voltaic based DG unit is allocated in the considered test systems.

Article
Publication date: 13 September 2021

Manik Chandra and Rajdeep Niyogi

This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service…

Abstract

Purpose

This paper aims to solve the web service selection problem using an efficient meta-heuristic algorithm. The problem of selecting a set of web services from a large-scale service environment (web service repository) while maintaining Quality-of-Service (QoS), is referred to as web service selection (WSS). With the explosive growth of internet services, managing and selecting the proper services (or say web service) has become a pertinent research issue.

Design/methodology/approach

In this paper, to address WSS problem, the authors propose a new modified fruit fly optimization approach, called orthogonal array-based learning in fruit fly optimizer (OL-FOA). In OL-FOA, they adopt a chaotic map to initialize the population; they add the adaptive DE/best/2mutation operator to improve the exploration capability of the fruit fly approach; and finally, to improve the efficiency of the search process (by reducing the search space), the authors use the orthogonal learning mechanism.

Findings

To test the efficiency of the proposed approach, a test suite of 2500 web services is chosen from the public repository. To establish the competitiveness of the proposed approach, it compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC). The empirical results show that the proposed approach outperforms its counterparts in terms of response time, latency, availability and reliability.

Originality/value

In this paper, the authors have developed a population-based novel approach (OL-FOA) for the QoS aware web services selection (WSS). To justify the results, the authors compared against four other meta-heuristic approaches (including classical as well as state-of-the-art), namely, fruit fly optimization (FOA), differential evolution (DE), modified artificial bee colony algorithm (mABC) and global-best ABC (GABC) over the four QoS parameter response time, latency, availability and reliability. The authors found that the approach outperforms overall competitive approaches. To satisfy all objective simultaneously, the authors would like to extend this approach in the frame of multi-objective WSS optimization problem. Further, this is declared that this paper is not submitted to any other journal or under review.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 7 July 2020

Golak Bihari Mahanta, Deepak BBVL, Bibhuti B. Biswal and Amruta Rout

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable…

Abstract

Purpose

From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems.

Design/methodology/approach

In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer.

Findings

This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis.

Practical implications

The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries.

Originality/value

In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

21 – 30 of 445