Search results

1 – 10 of 122
Article
Publication date: 2 May 2017

Piotr Lapka, Piotr Furmanski and Tomasz Wisniewski

The paper aims to present the advanced mathematical and numerical models of conjugated heat and mass transfer in a multi-layer protective clothing, human skin and muscle subjected…

Abstract

Purpose

The paper aims to present the advanced mathematical and numerical models of conjugated heat and mass transfer in a multi-layer protective clothing, human skin and muscle subjected to incident external radiative heat flux.

Design/methodology/approach

The garment was made of three layers of porous fabric separated by the air gaps, whereas in the tissue, four skin sublayers and muscle layer were distinguished. The mathematical model accounted for the coupled heat transfer by conduction and thermal radiation with the associated phase transition of the bound water in the fabric fibres and diffusion of the water vapour in the clothing layers and air gaps. The skin and muscle were modelled with two equation model which accounted for heat transfer in the tissue and arterial blood. Complex thermal and mass transfer conditions at the internal or external boundaries between the fabric layers, air gaps and skin were assumed. Special attention was paid to modelling of thermal radiation emitted by external heat source, for example, a fire, penetrating through the protective clothing and being absorbed by the skin and muscle.

Findings

Temporal and spatial variations of temperature in the protective garment, skin and muscle, as well as volume fractions of the water vapour and bound water in the clothing, were calculated for various intensity of incident radiative heat flux. The results of numerical simulation were used to estimate the risk of the first-, second- and third-degree burns.

Research limitations/implications

Because of the small thickness of the considered system in comparison to its lateral dimensions, the presented model was limited to 1D heat and moisture transfer. The convective heat transfer through the clothing was neglected.

Practical implications

The model may be applied for design of the new protective clothing and for assessment of thermal performance of the various types of protective garments. Additionally, the proposed approach may be used in the medicine for estimation of degree of thermal destruction of the tissue during treatment of burns.

Originality/value

The novel advanced thermal model of the multi-layer protective garment, skin and muscle layer was developed. For the first time, non-grey optical properties and various optical phenomena at the internal or external boundaries between the fabric layers, air gaps and skin were accounted for during simulation of thermal interactions between the external heat source (e.g. a fire), protective clothing and human skin.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Yun Su, Yunyi Wang and Jun Li

The purpose of this paper is to provide the details of developments to researchers in test apparatus and evaluation methods to rate the thermal protective performance (TPP) of…

Abstract

Purpose

The purpose of this paper is to provide the details of developments to researchers in test apparatus and evaluation methods to rate the thermal protective performance (TPP) of firefighters’ clothing under high-temperature and high-humidity condition.

Design/methodology/approach

This review paper describes the influence laws of moisture on thermal protection and the moisture distribution in actual fire environment. Different evaluation methods used for assessing the effect of moisture on the TPP were investigated, with an emphasis on test devices, evaluation indexes as well as their relationship and limitations.

Findings

The moisture from the ambient, clothing and human perspiration plays an important role in determining the TPP of firefighter protective clothing. It is obvious that research on moisture-driven heat transfer in firefighter’s clothing system are comparatively little, primarily focussing on pre-wetted methods of multi-layer fabric. Further studies should be conducted to develop more standardized moistening systems and improve the current calculation methods for evaluating the performance of protective clothing. New explorations for heat and moisture transfer mechanism in protective clothing should be investigated.

Practical implications

Protective clothing is the efficient way to provide fire-fighting occupational safety. To accurately evaluate the TPP of protective clothing under high-temperature and high-humidity condition will help to optimize the clothing performance and choose the proper clothing for providing firefighters with the best protection under multiple thermal hazards.

Originality/value

This paper is offered as a concise reference for scientific community further research in the area of the TPP evaluation methods under high-temperature and high-humidity condition.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 March 2018

Meng Deng, Yunyi Wang and Peijing Li

The purpose of this paper is to provide the details of developments to research works in the distribution characteristics of the air gaps within firefighters’ clothing and…

Abstract

Purpose

The purpose of this paper is to provide the details of developments to research works in the distribution characteristics of the air gaps within firefighters’ clothing and research methods to evaluate the effect of air gaps on the thermal protective performance of firefighters’ clothing.

Design/methodology/approach

In this paper, the distribution of air gaps within firefighters’ clothing was first analyzed, and the air gaps characteristics were summarized as thickness, location, heterogeneity, orientation and dynamics. Then, the evaluation of the air gap on the thermal protective performance of fighters’ clothing was reviewed for both experimental and numerical studies.

Findings

The air gaps within clothing layers and between clothing and skin play an important role in determining the thermal protective performance of firefighters’ protective clothing. It is obvious that research works on the effects of actual air gaps entrapped in firefighters’ clothing on thermal protection are comparatively few in number, primarily focusing on static and uniform air gaps at the fabric level. Further studies should be conducted to define the characteristic of air gap, deepen the understand of mechanism of heat transfer and numerically simulate the 3D dynamic heat transfer in clothing to improve the evaluation of thermal protective performance provided by the firefighters’ clothing.

Practical implications

Air gaps within thermal protective clothing play a crucial role in the protective performance of clothing and provide an efficient way to provide fire-fighting occupational safety. To accurately characterize the distribution of air gaps in firefighters’ clothing under high heat exposure, the paper will provide guidelines for clothing engineers to design clothing for fighters and optimize the clothing performance.

Originality/value

This paper is offered as a concise reference for researchers’ further research in the area of the effect of air gaps within firefighters’ clothing under thermal exposure.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 October 2023

Samridhi Garg, Vinay Kumar Midha and Monica Sikka

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Abstract

Purpose

In experiments utilising sweat solution and distilled water, seamed ensembles performed less thermally efficiently than unseamed fabrics.

Design/methodology/approach

Water may not accurately reflect perspiration when testing multi-layered clothes for thermal comfort in wet state. Most researchers used water or sodium chloride (NaCl) to measure wet state thermal comfort. However, human perspiration is an extremely complex mixture of aqueous chemicals, including minerals, salts, lipids, urea and lactic acid. This study compares the effects of simulated sweat solution to distilled water on the thermal behaviour of a multi-layered fabric assembly with different seam patterns.

Findings

Experiment results show that stitching decreases thermal resistance and thermal conductivity. Seam pattern of 10 cm diagonal spacing is more thermally resistant than 2.5 cm diagonal spacing. In comparison to that of simulated sweat, fabric that has been moistened with distilled water exhibits increased thermal conductivity. Hollow polyester wadding or micro polyester wadding as the intermediate layer exhibits greater thermal resistance than multi-layered construction with spacer fabric as middle layer.

Originality/value

This study considers human perspiration while designing protective clothing for wet thermal comfort.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 February 2024

Boyi Li, Miao Tian, Xiaohan Liu, Jun Li, Yun Su and Jiaming Ni

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors…

Abstract

Purpose

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors affecting the TPP using model visualization.

Design/methodology/approach

A total of 13 machine learning models were trained by collecting 414 datasets of typical flame-retardant fabric from current literature. The optimal performance model was used for feature importance ranking and correlation variable analysis through model visualization.

Findings

Five models with better performance were screened, all of which showed R2 greater than 0.96 and root mean squared error less than 3.0. Heat map results revealed that the TPP of fabrics differed significantly under different types of thermal exposure. The effect of fabric weight was more apparent in the flame or low thermal radiation environment. The increase in fabric weight, fabric thickness, air gap width and relative humidity of the air gap improved the TPP of the fabric.

Practical implications

The findings suggested that the visual analysis method of machine learning can intuitively understand the change trend and range of second-degree burn time under the influence of multiple variables. The established models can be used to predict the TPP of fabrics, providing a reference for researchers to carry out relevant research.

Originality/value

The findings of this study contribute directional insights for optimizing the structure of thermal protective clothing, and introduce innovative perspectives and methodologies for advancing heat transfer modeling in thermal protective clothing.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1545

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 November 2010

George K. Stylios

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 September 2023

A.I.H. Fayed, Y.A. Abo El Amaim, Ossama R. Abdelsalam and Doaa H. Elgohary

This paper aims to estimate the performance of protective clothing used to resist puncture (anti-stab property).

Abstract

Purpose

This paper aims to estimate the performance of protective clothing used to resist puncture (anti-stab property).

Design/methodology/approach

Seven single-layer (one layer) samples were investigated in this research. The first three samples were already used for the purpose of (anti-stab property), manufactured from Du-Pont product (commercial samples). The rest of the samples were locally designed and manufactured for the same purpose. These seven samples have then been examined after been added in conjunction with WL Kevlar XP (S 104) witness multilayers (eight layers) panel to create which are called multilayer samples.

Findings

The results of the statistical analysis for one-way ANOVA illustrated significant effect for single layer samples for all properties. While for multi-layer samples, the results showed a significant difference for all variables except displacement. The Tukey post hoc test observed a significant effect for some samples; also, other samples show a non-significant effect between samples.

Originality/value

It was observed that the locally manufactured samples serve the purpose as (anti-stab samples) compared with the commercial samples. The radar chart shows that for single-layer sample, the fifth sample fulfill the highest radar chart area, whereas for multi-layer samples, the sixth sample achieved the highest radar chart area.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 January 2020

Meng Deng, Miao Tian, Yunyi Wang and Min Wang

The purpose of this paper is to determine the effect of flash fire exposure on the mechanical properties of single-layer thermal protective clothing.

Abstract

Purpose

The purpose of this paper is to determine the effect of flash fire exposure on the mechanical properties of single-layer thermal protective clothing.

Design/methodology/approach

The full-scale flame manikin tests were performed to simulate flash fire exposure. Two typical fire-resistant fabrics were investigated. The manikin was divided into seven body parts and the specimens meeting the requirements of tensile and tear strength standards were sampled. Fabric thickness, mass per unit area, tensile strength and tear strength were measured and analyzed.

Findings

The results revealed the significant influence of heat flux on both of tensile and tear strength. However, the regression analysis indicated the low R2 of the liner models. When the tensile and tear strength retention were reorganized based on the body parts, both of the multiple linear regression models for tensile and tear strength showed higher R2 than the one-variable linear regressions. Furthermore, the R2 of the multiple linear regression model for tear strength retention was remarkably higher than that of the tensile strength.

Practical implications

The findings suggested that greater attention should be paid to the local part of human body and more factors such as the air gap should be considered in the future thermal aging of firefighters’ clothing studies.

Originality/value

The outcomes provided useful information to evaluate the mechanical properties of thermal protective clothing and predict its service life.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1246

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 122