Search results

1 – 10 of 17
Article
Publication date: 8 February 2021

Yu Luo, Xiangdong Jiao, Zewei Fang, Shuxin Zhang, Xuan Wu, Dongyao Wang and Qin Chu

This paper aims to propose a diverless weld bead maintenance welding technology to prevent the leakage of subsea oil and gas pipeline and solve the key problems in the maintenance…

Abstract

Purpose

This paper aims to propose a diverless weld bead maintenance welding technology to prevent the leakage of subsea oil and gas pipeline and solve the key problems in the maintenance of subsea pipeline.

Design/methodology/approach

Based on the analysis of the cross-section of the fillet weld, the multi-layer and multi-pass welding path planning of the submarine pipeline sleeve fillet weld is studied, and thus a multi-layer and multi-pass welding path planning strategy is proposed. A welding seam filling method is designed, and the end position of the welding gun is planned, which provides a theoretical basis for the motion control of the maintenance system.

Findings

The trajectory planning and adjustment of multi-layer and multi-pass fillet welding and the motion stability control of the rotating mechanism are realized.

Research limitations/implications

It provides the basis for the prototype design of the submarine pipeline maintenance and welding robot system, and also lays the foundation for the in-depth research on the intelligent maintenance system of submarine pipeline.

Originality/value

The maintenance of diverless subsea pipeline is a new type of maintenance method, which can solve the problem of large amount of subsea maintenance work with high efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 March 2015

Zeng Jinle, Zou Yirong, Du Dong, Chang Baohua and Pan Jiluan

This paper aims to develop a feasible visual weld detection method to solve the problems in multi-layer welding detection (e.g. cover pass welding detection) for seam tracking and

Abstract

Purpose

This paper aims to develop a feasible visual weld detection method to solve the problems in multi-layer welding detection (e.g. cover pass welding detection) for seam tracking and non-destructive testing. It seeks for an adaptive and accurate way to determine the edge between the seam and the base metal in the grayscale image of weld automatically. This paper tries to contribute to next-generation real-time robotic welding systems for multi-layer welding.

Design/methodology/approach

This paper opted for invariant moments to characterize the seam and the base metal for classification purposes. The properties of invariant moments, such as high degree of self-similarity and separation, affine invariance and repetition invariance, were discussed to verify the adaptability of the invariant moment in weld detection. Then, a weld detection method based on invariant moments was proposed to extract the edge between the seam and the base metal, including image division, invariant moment features extraction, K-Means adaptive thresholding, maximum connected domain detection and edge position extraction.

Findings

This paper highlights the significance of high degree of self-similarity and separation, affine invariance and repetition invariance of the invariant moment for weld detection. An adaptive, effective and accurate method is proposed to detect the edge between the seam and the base metal based on invariant moments.

Research limitations/implications

It is necessary to verify the applicability of the proposed method in variable welding conditions further. Further works will focus on the establishment of a real-time seam tracking system during the whole multi-layer/multi-pass welding process based on such adaptive visual features.

Practical implications

This paper includes the implications for development of an adaptive and real-time weld detection method, which is expected to be applied to online seam tracking in multi-layer welding.

Originality/value

This paper presents an accurate weld detection method in multi-layer welding, overcoming difficulties in effectiveness, adaptability and efficiency of existing weld detection methods.

Details

Industrial Robot: An International Journal, vol. 42 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Abstract

Purpose

This paper aims to numerical and experimental analysis on substrate deformation and plastic strain induced by wire arc additive manufacturing.

Design/methodology/approach

The component has the form of a hollow, rectangular thin wall consisting of 25 deposition layers of SS316L on an SS304 substrate plate. Thermo-mechanical finite element analysis was applied with Goldak’s double-ellipsoidal heat-source model and a non-linear isotropic hardening rule based on von Mises’ yield criterion. The layer deposition was modelled using simplified geometry to minimize overall pre-processing work and computational time.

Findings

A new material modelling of SS316L was obtained from the chemical composition of the evolved component characterized by scanning electron microscope/energy dispersive X-ray and further generated by an advanced material-modelling software JMatPro. In defining heat-transfer coefficients, transient thermometric analysis was first performed in the bead and on the substrate, which was followed by an adjustment of the heat-transfer coefficients to reflect the actual temperature distribution. Based on the adjusted model and boundary conditions, sensitivity analysis was conducted prior to the ultimate simulation of substrate deformation and equivalent plastic strain. Furthermore, this simulation was verified by conducting a series of automated wire + arc additive manufacturing tests using robotic gas Metal arc welding with distortion measured by coordinate-measurement machine and equivalent plastic strain measured by optical three-dimensional-metrology measurements (Gesellschaft für Optische Messtechnik).

Originality/value

It can be concluded that a proper numerical computation using the adjusted model and property-evolved material exhibits a similar trend with acceptable agreement compared to the experiment by yielding an error percentage up to 30% for deformation and up to 21% for equivalent plastic strain at each individual measurement point.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2019

Rong Li and Jun Xiong

This paper aims to study the residual stress of deposited components which is a main issue to impede the widespread application of wire and arc additive manufacturing (WAAM). The…

Abstract

Purpose

This paper aims to study the residual stress of deposited components which is a main issue to impede the widespread application of wire and arc additive manufacturing (WAAM). The interlayer dwell time is believed to have an effect on residual stress distributions in WAAM due to variance in heat dissipation condition. A coupled thermomechanical finite element model was established to evaluate the role of dwell time in between layers on the mechanical behavior of thin-walled components in WAAM, mainly involving thermal stress evolutions and residual stress distributions of the component and substrate.

Design/methodology/approach

Four interlayer dwell times including 0, 120 and 300 s and cooling to ambient temperature were selected in finite element modeling, and corresponding experiments were conducted to verify the reliability of the model.

Findings

The results show that with the interlayer dwell time, the stress cycling curves become more uniform and the interlayer stress-releasing effect is weakened. The residual stress levels on the substrate decrease with the increasing interlayer dwell time. In the outside surface of the component, the distributions of axial and longitudinal residual stress along the deposition path are the smoothest when the interlayer dwell time is cooling to ambient temperature. In the inside surface, a longer interlayer dwell time leads to an obvious decrease in the longitudinal and axial residual stress along the deposition path.

Originality/value

The comprehensive study of how the interlayer dwell time influences stress field of components is helpful to improve the deposition defects generated by WAAM.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 June 2023

Abdul Kareem Abdul Jawwad and Mofid Mahdi

This article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and

Abstract

Purpose

This article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and propagation of fatigue failure in thick shaft sections.

Design/methodology/approach

Experimental and numerical techniques were applied in the present study to explore the relationship(s) between welding residual-stress distribution and fatigue failure characteristics in a hydropower generator shaft. Experimental techniques included stereomicroscopy, optical and scanning electron microscopy (SEM), chemical analysis and mechanical testing. Finite element modelling (FEM) was used to model the shaft welding cycle in terms of thermal (temperature) history and the associated development of residual stresses within the weld joint.

Findings

Experimental analyses have confirmed the suitability of the used material for the intended application and confirmed the failure mode to be low cycle fatigue. The observed failure characteristics, however, did not match with the applied loading in terms of design stress levels, directionality and expected crack imitation site(s). FEM results have revealed the presence of a sharp stress peak in excess of 630 MPa (about 74% of material's yield strength) around weld start point and a non-uniform residual stress distribution in both the circumferential and through-thickness directions. The present results have shown very close matching between FEM results and observed failure characteristics.

Practical implications

The present article considers an actual industrial case of a hydropower generator shaft failure. Present results are valuable in providing insight information regarding such failures as well as some preventive design and fabrication measures for the hydropower and other power generation and transmission sector.

Originality/value

The presence of the aforementioned stress peak around welding start/end location and the non-uniform distribution of residual-stress field are in contrast to almost all published results based on some uniformity assumptions. The present FEM results were, however, the only stress distribution scenario capable of explaining the failure considered in the present research.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 24 July 2019

Rong Li and Jun Xiong

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected…

Abstract

Purpose

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected by the substrate shape through finite element analysis, including distributions of thermal energy and temperature gradient in the molten pool and deposited layers.

Design/methodology/approach

Three geometric shapes, namely, square, rectangle and round were chosen in simulation, and validation tests were carried out by corresponding experiments.

Findings

The thermal energy conduction ability of the deposited layers is the best on the round substrate and the worst on the rectangular substrate. The axial maximum temperature gradients in the molten pool along the deposition path with the round substrate are the largest during the deposition process. At the deposition ending moment, the circumferential temperature gradients of all layers with the round substrate are the largest. A large temperature gradient usually stands for a good heat conduction condition. Altogether, the round substrate is more suitable for the fabrication of circular thin-walled parts.

Originality/value

The predicted thermal distributions of the circular thin-walled part with various substrate shapes are helpful to understand the influence of substrate shape on the thermal energy transmission behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 January 2022

Xushan Zhao, Yuanxun Wang, Haiou Zhang, Runsheng Li, Xi Chen and Youheng Fu

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology…

272

Abstract

Purpose

This paper aims to summarize the influence law of hybrid deposited and micro-rolling (HDMR) technology on the bead morphology and overlapping coefficient. A better bead topology positively supports the overlapping deposited in multi-beads between layers while actively assisting the subsequent layer's deposition in the wire and arc additive manufacturing (WAAM). Hybrid-deposited and micro-rolling (HDMR) additive manufacturing (AM) technology can smooth the weld bead for improved surface quality. However, the micro-rolling process will change the weld bead profile fitting curve to affect the overlapping coefficient.

Design/methodology/approach

Weld bead contours for WAAM and HDMR were extracted using line lasers. A comparison of bead profile curves was conducted to determine the influence law of micro-zone rolling on the welding bead contour and fitting curve. Aiming at the optimized overlapping coefficient of weld bead in HDMR AM, the optimal HDMR overlapping coefficient curve was proposed which varies with the reduction based on the best surface flatness. The mathematical model for overlapping in HDMR was checked by comparing the HDMR weld bead contours under different rolling reductions.

Findings

A fitting function of the bead forming by HDMR AM was proposed based on the law of conservation of mass. The change rule of the HDMR weld bead overlapping spacing with the degree of weld bead rolling reduction was generated using the flat-top transition calculation for this model. Considering the damming-up impact of the first bead, the overlapping coefficient was examined for its effect on layer surface flatness.

Originality/value

Using the predicted overlapping model, the optimal overlapping coefficients for different rolling reductions can be achieved without experiments. These conclusions can encourage the development of HDMR technology.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 June 2021

Felipe Ribeiro Teixeira, Fernando Matos Scotti, Ruham Pablo Reis and Américo Scotti

This paper aims to assess the combined effect of the Cold Metal Transfer (CMT) advanced process and of a thermal management technique (near immersion active cooling [NIAC]) on the…

Abstract

Purpose

This paper aims to assess the combined effect of the Cold Metal Transfer (CMT) advanced process and of a thermal management technique (near immersion active cooling [NIAC]) on the macro and microstructure of Al wall-like preforms built by wire arc additive manufacturing (WAAM). As specific objective, it sought to provide information on the effects of the electrode-positive/electrode-negative (EP/EN) parameter in the CMT advanced process fundamental characteristics.

Design/methodology/approach

Initially, bead-on-plate deposits were produced with different EP/EN ratios, still keeping the same deposition rate, and the outcomes on the electrical signal traces and bead formation were analyzed. In a second stage, the EP/EN parameter and the layer edge to water distance (LEWD) parameter from the NIAC technique were systematically varied and the resultant macro and microstructures compared with those formed by applying natural cooling.

Findings

Constraints of EP/EN setting range were uncovered and discussed. The use of the NIAC technique favors the formation of finer grains. For a given EP/EN value, a variation in the NIAC intensity (LEWD value) showed marginal effect on grain size. When the EP/EN parameter effect is isolated, i.e. for a given LEWD setting, it was observed that an increase in the EP/EN level favors coarser grains.

Originality/value

Both the EP/EN parameter and the use of an active cooling technique (NIAC) might be used, even in combination, as effective tools for achieving proper macro and microstructure in WAAM of thin wall builds.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 September 2019

Rong Li and Jun Xiong

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially…

Abstract

Purpose

An accurate prediction of process-induced residual stress is necessary to prevent large distortion and cracks in gas metal arc (GMA)-based additive manufactured parts, especially thin-walled parts. The purpose of this study is to present an investigation into predicting the residual stress distributions of a thin-walled component with geometrical features.

Design/methodology/approach

A coupled thermo-mechanical finite element model considering a general Goldak double ellipsoidal heat source is built for a thin-walled component with geometrical features. To confirm the accuracy of the model, corresponding experiments are performed using a positional deposition method in which the torch is tilted from the normal direction of the substrate. During the experiment, the thermal cycle curves of locations on the substrate are obtained by thermocouples. The residual stresses on the substrate and part are measured using X-ray diffraction. The validated model is used to investigate the thermal stress evolution and residual stress distributions of the substrate and part.

Findings

Decent agreements are achieved after comparing the experimental and simulated results. It is shown that the geometrical feature of the part gives rise to an asymmetrical transversal residual stress distribution on the substrate surface, while it has a minimal influence on the longitudinal residual stress distribution. The residual stress distributions of the part are spatially uneven. The longitudinal tensile residual stress is the prominent residual stress in the central area of the component. Large wall-growth tensile residual stresses, which may cause delamination, appear at both ends of the component and the substrate–component interfaces.

Originality/value

The predicted residual stress distributions of the thin-walled part with geometrical features are helpful to understand the influence of geometry on the thermo-mechanical behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 17