Search results

21 – 30 of over 5000
Article
Publication date: 24 May 2023

Rosa Vinciguerra, Francesca Cappellieri, Michele Pizzo and Rosa Lombardi

This paper aims to define a hierarchical and multi-criteria framework based on pillars of the Modernization of Higher Education to evaluate European Accounting Doctoral Programmes…

Abstract

Purpose

This paper aims to define a hierarchical and multi-criteria framework based on pillars of the Modernization of Higher Education to evaluate European Accounting Doctoral Programmes (EADE-Model).

Design/methodology/approach

The authors applied a quali-quantitative methodology based on the analytic hierarchy process and the survey approach. The authors conducted an extensive literature and regulation review to identify the dimensions affecting the quality of Doctoral Programmes, choosing accounting as the relevant and pivotal field. The authors also used the survey to select the most critical quality dimensions and derive their weight to build EADE Model. The validity of the proposed model has been tested through the application to the Italian scenario.

Findings

The findings provide a critical extension of accounting ranking studies constructing a multi-criteria, hierarchical and updated evaluation model recognizing the role of doctoral training in the knowledge-based society. The results shed new light on weak areas apt to be improved and propose potential amendments to enhance the quality standard of ADE.

Practical implications

Theoretical and practical implications of this paper are directed to academics, policymakers and PhD programmes administrators.

Originality/value

The research is original in drafting a hierarchical multi-criteria framework for evaluating ADE in the Higher Education System. This model may be extended to other fields.

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 1 April 2001

CHEE H. WONG, GARY D. HOLT and PHIL HARRIS

The ‘lowest‐price wins’ philosophy has been a consistent theme of contractor selection over the years. To comprehensively elucidate this selection preference and compare it with…

1520

Abstract

The ‘lowest‐price wins’ philosophy has been a consistent theme of contractor selection over the years. To comprehensively elucidate this selection preference and compare it with the use of a multi‐criteria selection (MCS) approach in the tenderer evaluation process, this paper investigates MCS tender price selection preferences. That is, project‐specific criteria (PSC) and lowest‐price wins selection practices of UK construction clients, in both building and civil engineering works at in detail via results of the empirical survey. The investigation provides further insight into the evaluation of contractors' attributes (i.e. PSC). Levels of importance assigned (LIA) for each criterion were analysed (i.e. quantitative analysis of the differences in opinions and, variance amongst the respondents) in a multivariate statistical method. Importance attached by construction clients to the ‘lowest‐price wins’ philosophy is also presented. Contrast was made between the MCS approach and the ‘lowest‐price wins’ option amongst the surveyed construction clients. It was found that increased awareness of the use of PSC prevailed amongst the survey construction clients. This indicated that cost has to be tempered with the evaluation of PSC and the attempt of construction clients searching for a new evaluation paradigm (i.e. adoption of MCS approach rather than basing on the lowest‐price wins alone).

Details

Engineering, Construction and Architectural Management, vol. 8 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 June 2016

Michelle S. Dojutrek, Samuel Labi and J. Eric Dietz

Transportation project evaluation and prioritization use traditional performance measures including travel time, safety, user costs, economic efficiency and environmental quality…

Abstract

Purpose

Transportation project evaluation and prioritization use traditional performance measures including travel time, safety, user costs, economic efficiency and environmental quality. The project impacts in terms of enhancing the infrastructure resilience or mitigating the consequences of infrastructure damage in the event of disaster occurrence are rarely considered in project evaluation. This paper aims to present a methodology to address this issue so that in prioritizing investments, infrastructure with low security can receive the attention they deserve. Second, the methodology can be used for prioritizing candidate investments from a budget that is dedicated specifically to security enhancement.

Design/methodology/approach

In defining security as the absence of risk of damage from threats due to inherent structural or functional resilience, this paper uses security-related considerations in investment prioritization, thus introducing robustness in such evaluation. As this leads to an increase in the number of performance criteria in the evaluation, the paper adopts a multi-criteria analysis approach. The paper’s methodology quantifies the overall security level for an infrastructure in terms of the threats it faces, its resilience to damage and the consequences in the event of the infrastructure damage.

Findings

The paper demonstrates that it is feasible to develop a security-related measure that can be used as a performance criterion in the evaluation of general transportation projects or projects dedicated specifically toward security improvement. Through a case study, the paper applies the methodology by measuring the risk (and hence, security) of each for multiple infrastructure assets. On the basis of the multiple types of impacts including risk impacts (i.e. increase in security) because of each candidate investment, the paper shows how to prioritize security investments across the multiple infrastructure assets using multi-criteria analysis.

Originality/value

The overall framework consists of the traditional steps in risk management, and the paper’s specific contribution is in the part of the framework that measures the risk. The paper shows how infrastructure security can be quantified and incorporated in the project evaluation process.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 7 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

Book part
Publication date: 17 November 2023

Simon Ofori Ametepey, Clinton Ohis Aigbavboa and Wellington Didibhuku Thwala

This section describes sustainable development (SD) in relation to infrastructure projects and explains how to evaluate SD. SD is assessed as context-dependent, considering the…

Abstract

This section describes sustainable development (SD) in relation to infrastructure projects and explains how to evaluate SD. SD is assessed as context-dependent, considering the project’s economic, social, and ecological context. Sustainable road infrastructure projects (SRIP) should encapsulate the complete life cycle from idea to development, functionality, and maintenance. SD should be considered as part of the evaluation process prior to project execution, but it can also serve other functions. Sustainability evaluation must start with project appraisal or evaluation and the earliest stages of project decision-making. Sustainable infrastructure projects (SIPs) are evaluated using a variety of techniques and models, such as cost-benefit analysis (CBA), multi-criteria techniques, ecological and societal impact assessments, ranking techniques, models, and evaluation guidelines. Established SD structures and modelling techniques for infrastructure projects are presented from an SD perspective, with the primary objective of investigating how they operate and determining whether existing models provide an effective method for applying the SD idea into infrastructure development. CBA is a widely used strategy for evaluating alternatives to maximize sociocultural well-being. It is based on the likelihood of costing customer advantages and negative impacts and has been discussed in scholarly articles. The multi-criteria decision analysis (MCDA) approach is an acceptable methodology for addressing complex matters involving high risk, conflicting objectives, different types of information and data, different concerns and points of view, and the representation of complex and evolving biological, ecological, and financial frameworks. It combines many methodologies and offers various advantages over more conventional ways of decision-making and plan development. It should be used to increase community participation and empower partner organizations and should apply several criteria at the same time, including those that are difficult to adjust and quantify. The key difficulty with this strategy is the usage of weightings, which has been sharply criticized by several researchers. Life-cycle assessment (LCA) is an adaptive tool used to assess the ecological effects of a particular action, task, or procedure. It is applied globally to decision-making in numerous fields, including transportation, energy, and water, and has become a typical tool for determining the ecological performance of infrastructure projects. However, it has a few flaws and could benefit from improvements to assess SD with greater precision. It is a fragmented mechanism for assessing the three components of SD, but its incorporation into other evaluation approaches is desirable. The evaluation of societal implications has been conducted using a variety of methods and techniques, but there is currently no standard method for assessing the communal and appropriation consequences of infrastructure initiatives. Social life-cycle assessments (SLCAs) are advancing, but consensus remains a challenge. The Evaluation Partnership and the Centre for European Policy Studies identified several obstacles and challenges to implementing an outstanding societal assessment, such as the term ‘societal impacts’ being potentially overbroad and not adequately defined, and the lack of a suitable method for quantitatively evaluating sociological effects. Additionally, a large section of societal assessments is biased and frequently inconsequential. The chapter discussed the theoretical and methodological stances on sustainable road infrastructure, using current SID concepts and evaluation techniques thoroughly.

Details

Sustainable Road Infrastructure Project Implementation in Developing Countries: An Integrated Model
Type: Book
ISBN: 978-1-83753-811-9

Keywords

Article
Publication date: 18 July 2008

Selçuk Perçin

The objective of this paper is to present the employment of the new hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate…

3222

Abstract

Purpose

The objective of this paper is to present the employment of the new hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable business process outsourcing (BPO) decision.

Design/methodology/approach

The paper explains the importance of selection criteria for evaluation of BPO. It then describes briefly the fuzzy hierarchical TOPSIS methodology. There then follows a discussion of the application of the fuzzy hierarchical TOPSIS with some sensitivity analysis to the BPO evaluation problem. Finally, some concluding remarks and perspectives are offered.

Findings

Use of the hierarchical fuzzy TOPSIS methodology offers a number of benefits. It is a more systematic method than the other fuzzy multi‐criteria decision‐making (FMCDM) methods and it is more capable of capturing a human's appraisal of ambiguity when complex multi‐criteria decision‐making problems are considered. The hierarchical fuzzy TOPSIS is superior to the other FMCDM methods, such as fuzzy analytic hierarchy process (FAHP) and classical fuzzy TOPSIS methods, since the hierarchical structure without making pairwise comparisons among criteria, sub‐criteria, and alternatives is considered. Hierarchical fuzzy TOPSIS is an excellent tool to handle qualitative assessments about BPO evaluation problems, and its calculations are faster than FAHP. Also, hierarchical fuzzy TOPSIS makes it possible to take into account the hierarchical structure in the evaluation model. However, there are drawbacks. The classical fuzzy TOPSIS is a highly complex methodology and requires more numerical calculations in assessing the ranking order of the alternatives than the hierarchical fuzzy TOPSIS methodology and hence it increases the effort, thus limiting its applicability to real world problems.

Originality/value

The proposed model will be very useful to managers in the manufacturing sector, as this method makes decision making easier, systematic, efficient and effective.

Details

Information Management & Computer Security, vol. 16 no. 3
Type: Research Article
ISSN: 0968-5227

Keywords

Article
Publication date: 3 October 2016

Chhabi Ram Matawale, Saurav Datta and S.S. Mahapatra

The recent global market trend is seemed enforcing existing manufacturing organizations (as well as service sectors) to improve existing supply chain systems or to take up/adapt…

1298

Abstract

Purpose

The recent global market trend is seemed enforcing existing manufacturing organizations (as well as service sectors) to improve existing supply chain systems or to take up/adapt advanced manufacturing strategies for being competitive. The concept of the agile supply chain (ASC) has become increasingly important as a means of achieving a competitive edge in highly turbulent business environments. An ASC is a dynamic alliance of member enterprises, the formation of which is likely to introduce velocity, responsiveness, and flexibility into the manufacturing system. In ASC management, supplier/partner selection is a key strategic concern. Apart from traditional supplier/partner selection criteria; different agility-related criteria/attributes need to be taken under consideration while selecting an appropriate supplier in an ASC. The paper aims to discuss these issues.

Design/methodology/approach

Therefore, evaluation and selection of potential supplier in an ASC have become an important multi-criteria decision making problem. Most of the evaluation criteria being subjective in nature; traditional decision-making approaches (mostly dealing with objective data) fail to solve this problem. However, fuzzy set theory appears an important mean to tackle with vague and imprecise data given by the experts. In this work, application potential of the fuzzy multi-level multi-criteria decision making (FMLMCDM) approach proposed by Chu and Velásquez (2009) and Chu and Varma (2012) has been examined and compared to that of Fuzzy-techniques for order preference by similarity to ideal solution (TOPSIS) and Fuzzy-MOORA in the context of supplier selection in ASC.

Findings

It has been observed that similar ranking order appears in FMLMCDM as well as Fuzzy-TOPSIS. In Fuzzy-MOORA, the best alternative appears same as in case of FMLMCDM as well as Fuzzy-TOPSIS; but for other alternatives ranking order differs. A comparative analysis has also been made in view of working principles of FMLMCDM, Fuzzy-TOPSIS as well as Fuzzy-MOORA.

Originality/value

Application feasibility of FMLMCDM approach has been verified in comparison with Fuzzy-TOPSIS and Fuzzy-MOORA in the context of agile supplier selection.

Book part
Publication date: 5 October 2018

Long Chen and Wei Pan

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be…

Abstract

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be challenged with satisfying multiple criteria using vague information. Fuzzy multi-criteria decision-making (FMCDM) provides an innovative approach for addressing complex problems featuring diverse decision makers’ interests, conflicting objectives and numerous but uncertain bits of information. FMCDM has therefore been widely applied in construction management. With the increase in information complexity, extensions of fuzzy set (FS) theory have been generated and adopted to improve its capacity to address this complexity. Examples include hesitant FSs (HFSs), intuitionistic FSs (IFSs) and type-2 FSs (T2FSs). This chapter introduces commonly used FMCDM methods, examines their applications in construction management and discusses trends in future research and application. The chapter first introduces the MCDM process as well as FS theory and its three main extensions, namely, HFSs, IFSs and T2FSs. The chapter then explores the linkage between FS theory and its extensions and MCDM approaches. In total, 17 FMCDM methods are reviewed and two FMCDM methods (i.e. T2FS-TOPSIS and T2FS-PROMETHEE) are further improved based on the literature. These 19 FMCDM methods with their corresponding applications in construction management are discussed in a systematic manner. This review and development of FS theory and its extensions should help both researchers and practitioners better understand and handle information uncertainty in complex decision problems.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 19 September 2017

Tobias Lühn, Genoveva Schmidtmann and Jutta Geldermann

The aim of this paper is to introduce a newly developed multi-criteria analysis for the comparison of two grid expansion alternatives, conventional and voltage-regulated…

Abstract

Purpose

The aim of this paper is to introduce a newly developed multi-criteria analysis for the comparison of two grid expansion alternatives, conventional and voltage-regulated distribution transformer. The case study comprises environmental, economic, technical and social aspects.

Design/methodology/approach

The newly developed method decision condition Preference Ranking Organization METHod for Enrichment Evaluation (DC-PROMETHEE) combines scenario planning with the multi-attribute decision-making method PROMETHEE. DC-PROMETHEE supports the decision-maker to evaluate the total potential of an alternative considering a large number of decision conditions. The calculated performance indicator supports the decision-maker to select the best alternative.

Findings

The voltage-regulated distribution transformer shows a high overall potential in the present case study. This leads to the recommendation to the investigated distribution system operator to include the voltage-regulated distribution transformers as a grid expansion measure.

Practical implications

The DC-PROMETHEE can be applied to other distribution system operators by considering their individual grid topology and preferences. Other fields of application are infrastructure investments in the service area, in which expansion alternatives are evaluated in a large number of decision conditions. Examples include telecommunication, gas supply, water supply, sewage and rail networks.

Originality/value

This paper develops the DC-PROMETHEE approach. The DC-PROMETHEE enables the multi-criteria evaluation of a few alternatives in a large number of decision conditions.

Details

International Journal of Energy Sector Management, vol. 12 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 10 August 2012

Hakim Bendjenna, Pierre‐Jean Charre and Nacer Eddine Zarour

Many problems in science and engineering fields involve decision making. Usually these decision‐making processes are based on several criteria that represent various experts'…

1203

Abstract

Purpose

Many problems in science and engineering fields involve decision making. Usually these decision‐making processes are based on several criteria that represent various experts' knowledge. Stakeholder prioritization is useful for assisting in decision‐making situations where various stakeholders have competing interests, resources are limited, and stakeholder requirements must be appropriately balanced. When these conflicts arise it is important to the success of the organization that it has prioritized each stakeholder according to the situation. To date, few researchers tried to resolve this question, mostly are based on intuitive and very simple reasoning methods which are error prone. The purpose of this paper is to propose a multi‐criteria decision analysis process to help decision makers when evaluating and prioritizing stakeholders.

Design/methodology/approach

In this process, Mitchell et al.'s model is used for identifying criteria on which stakeholders will be evaluated and the fuzzy Choquet integral as an aggregation operator. This research also tested and discussed the proposal using a case study from Toulouse city subway.

Findings

The results show the applicability of this process and the effectiveness of using the fuzzy Choquet integral than a traditional multi‐criteria evaluation method for human subjective evaluation, or when criteria are not mutually independent.

Research limitations/implications

The highly subjective nature of criteria weights and rapid elicitation can lead to questions of validity. Also, results are not always widely accepted.

Originality/value

The paper is original in considering the stakeholder prioritization problem as a multi‐criteria decision analysis problem; using a simple and well‐known model to classify stakeholders, i.e Mitchell et al.'s model; and in using Choquet integral as an aggregation operator which allows considering interaction between criteria.

Details

Journal of Systems and Information Technology, vol. 14 no. 3
Type: Research Article
ISSN: 1328-7265

Keywords

21 – 30 of over 5000