Search results

1 – 10 of over 10000
Article
Publication date: 9 March 2015

Daoming Wang, Youfu Hou, Zuzhi Tian and Qingrui Meng

This study aims to reveal the temperature rise characteristic of magnetorheological (MR) fluid in a multi-disc MR clutch under slip condition, including the temperature…

Abstract

Purpose

This study aims to reveal the temperature rise characteristic of magnetorheological (MR) fluid in a multi-disc MR clutch under slip condition, including the temperature distribution regularity and the impact factors.

Design/methodology/approach

Three-dimensional transient heat conduction equation for the MR fluid in the working gap was derived based on the heat transfer theory. Then, numerical simulation was conducted to analyze the temperature field of MR fluid. Furthermore, an experimental study was performed to explore the temperature distribution of the MR fluid in radial and circumferential directions, as well as the effects of disc groove, slip power and gap size on temperature rise characteristic of the MR fluid.

Findings

The results show that temperature appears to be largest in the center of the working gap and the temperature difference increases with the slip time. However, the temperature field in a circumferential direction is basically the same, but it presents slightly lower in the groove area. The temperature of the MR fluid increases linearly with the slip time and the rise rate increases with the slip power. Moreover, the temperature rise value decreases with the increase of gap size.

Originality/value

In this paper, the temperature gradients, both in radial and circumferential directions, are experimentally measured going beyond the estimation by computer simulations. In addition, the factors that influence the temperature rise characteristic of MR fluid were fully analyzed. The results could provide a reliable basis for the development of cooling technology for high-power MR devices.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2007

Elena Carcadea, H. Ene, D.B. Ingham, R. Lazar, L. Ma, M. Pourkashanian and I. Stefanescu

This paper aims to present a three‐dimensional computational fluid dynamics (CFD) model that simulates the fluid flow, species transport and electric current flow in PEM fuel…

4085

Abstract

Purpose

This paper aims to present a three‐dimensional computational fluid dynamics (CFD) model that simulates the fluid flow, species transport and electric current flow in PEM fuel cells.

Design/methodology/approach

The model makes use of a general‐purpose CFD software as a basic tool incorporating fuel cell specific submodels for multi‐component species transport, electrochemical kinetics, water management and electric phase potential analysis in order to simulate various processes that occur in a PEM fuel cell.

Findings

Three dimensional results for the flow field, species transport, including waster formations, and electric current distributions are presented for two test flow configurations in the PEM fuel cell. For the two cases presented, reasonable predictions have been obtained, and this provides an insight into the effect of the flow designs to the operation of the fuel cell.

Research limitations/implications

It is appreciated that the CFD modeling of fuel cells is, in general, still facing significant challenges due to the limited understanding of the complex physical and chemical processes existing within the fuel cell. The model is now under further development to improve its capabilities and undergoing further validations.

Practical implications

The model simulations can provide detailed information on some of the key fluid dynamics, physical and chemical/electro‐chemical processes that exist in fuel cells which are crucial for fuel cell design and optimization.

Originality/value

The model can be used to understand the operation of the fuel cell and provide and alternative to experimental investigations in order to improve the performance of the fuel cell.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 May 2020

Liang Yang, Andrew Buchan, Dimitrios Pavlidis, Alan Jones, Paul Smith, Mikio Sakai and Christopher Pain

This paper aims to propose a three-phase interpenetrating continua model for the numerical simulation of water waves and porous structure interaction.

Abstract

Purpose

This paper aims to propose a three-phase interpenetrating continua model for the numerical simulation of water waves and porous structure interaction.

Design/methodology/approach

In contrast with one-fluid formulation or multi-component methods, each phase has its own characteristics, density, velocity, etc., and each point is occupied by all phases. First, the porous structure is modelled as a phase of continua with a penalty force adding on the momentum equation, so the conservation of mass is guaranteed without source terms. Second, the adaptive unstructured mesh modelling with P1DG-P1 elements is used here to decrease the total number of degree of freedom maintaining the same order of accuracy.

Findings

Several benchmark problems are used to validate the model, which includes the Darcy flow, classical collapse of water column and water column with a porous structure. The interpenetrating continua model is a suitable approach for water wave and porous structure interaction problem.

Originality/value

The interpenetrating continua model is first applied for the water wave and porous structure interaction problem. First, the structure is modelled as phase of non-viscous fluid with penalty force, so the break of the porous structure, porosity changes can be easily embedded for further complex studies. Second, the mass conservation of fluids is automatically satisfied without special treatment. Finally, adaptive anisotropic mesh in space is employed to reduce the computational cost.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1993

K.V. PRASHANTH and K.N. SEETHARAMU

A mathematical model is developed for the description of the thermohydraulics of the two‐phase flow phenomenon in a vertical pipe. Using an additional momentum equation for the…

Abstract

A mathematical model is developed for the description of the thermohydraulics of the two‐phase flow phenomenon in a vertical pipe. Using an additional momentum equation for the slip velocity, it is shown that the computation of slip and pressure drop from the model equations is possible without the use of any external correlations. The finite element method is used to solve the governing equations. The predictions for a steam‐water two‐phase flow in vertical upflow with constant wall heat flux agree well with experimental results and with widely used correlations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2013

Xiang Wang, Guangya Zhu and Ke Li

The present study aims to resolve the adjustment problem of cavitation bubble number density in simulations of the cavitating flows within the diesel injection nozzle holes using…

Abstract

Purpose

The present study aims to resolve the adjustment problem of cavitation bubble number density in simulations of the cavitating flows within the diesel injection nozzle holes using a two-fluid cavitation model.

Design/methodology/approach

The basic rule that determines the variations of cavitation bubble number density has been checked through the scaling analysis of a two-fluid model under the assumption of hydrodynamic similarity of the cavitating flows. Moreover, a phenomenological model for the number density of cavitation bubbles that takes the hydrodynamic effect into account has been developed through the combined analysis of cavitation bubble dynamics and internal flow characteristics of diesel injection nozzle holes. This new model has also been validated by the discharge coefficient measures in a wide range of injection conditions.

Findings

The values of cavitation bubble number density must rationally match changes both in liquid quality effect and in hydrodynamic effect corresponding to different cavitating flows. The validation results show that the two-fluid cavitation model together with this new cavitation bubble number density model predicts well both the cavitation content inside the diesel nozzle hole and the relationship between discharge coefficient and cavitation number, and the new cavitation bubble number density model has the potential to further expand the application range of the two-fluid cavitation model.

Originality/value

This study provides insight into hydrodynamic effect corresponding to cavitating flows inside diesel nozzle holes and presents an idea to model the cavitation bubble number density phenomenologically. The model idea and the developed model are useful to researchers and engineers in the area of nozzle internal flow and cavitating flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2003

Thomas Norrby

Environmentally adapted lubricants (EALs) have been a slowly growing segment of the lubricants business since the early 1970s. The evolution of environmental thinking has led to…

1307

Abstract

Environmentally adapted lubricants (EALs) have been a slowly growing segment of the lubricants business since the early 1970s. The evolution of environmental thinking has led to the change of focus, from biodegradability to renewability. In the future, the focus will be more on fuel economy and lower emissions. Technical development drivers include the availability of suitable base fluids and additives for lubricants formulation and the adaptation of technical standards, OEM specifications and eco‐labels. Important non‐technical development drivers include environmental management tools and eco auditing. Environmental policy, and procurement guidelines for cities and government organizations, clearly has a large impact. EALs have been repeatedly heralded as one of the few future growth segments of the lubricants business, hence the relatively large increase in R&D activity over the last decade. In sales terms, growth has been slow, limited by high cost and several other factors. For a good future development, both technical and political hurdles must be overcome.

Details

Industrial Lubrication and Tribology, vol. 55 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2002

T. Norrby Torbacke and M. Kopp

The Nordic marketplace, and in particular the Swedish market, is a sizeable part of the world market for environmentally adapted lubricants (EALs). The largest segment, by far, is…

Abstract

The Nordic marketplace, and in particular the Swedish market, is a sizeable part of the world market for environmentally adapted lubricants (EALs). The largest segment, by far, is EAL hydraulic fluids for mobile hydraulics, and chain saw oils for the environmentally adapted forestry operations (mainly) by the international Swedish and, until recently, Finnish forestry companies. In this paper, some of the important parameters influencing the size and development direction are analysed. These include market regulatory factors, eco‐labels, OEM‐issued standards/specifications, end‐user demands and the market volume development for the period 1999‐2001. The spread of EALs to other forestry markets, Norway and the Baltic States, is also covered.

Details

Industrial Lubrication and Tribology, vol. 54 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 December 2019

LanHao Zhao, Kailong Mu, Jia Mao, Khuc Hongvan and Dawei Peng

Moving interface problems exist commonly in nature and industry, and the main difficulty is to represent the interface. The purpose of this paper is to capture the accurate…

Abstract

Purpose

Moving interface problems exist commonly in nature and industry, and the main difficulty is to represent the interface. The purpose of this paper is to capture the accurate interface, a novel three-dimensional one-layer particle level set (OPLS) method is presented by introducing Lagrangian particles to reconstruct the seriously distorted level set function.

Design/methodology/approach

First, the interface is captured by the level set method. Then, the interface is corrected with only one-layer particles advected with the flow to ensure that the level set function value of the particle is equal to 0. When interfaces are merged, all particles in merged regions are deleted, while the added particles near the generated interface are used to determine the interface as the interface is separated.

Findings

The OPLS method is validated with well-known benchmark examples, such as the long-term advection of a sphere, the rotation of a three-dimensional slotted disk and sphere, single vortex in a box, sphere merging and separation, deformation of a sphere. The simulation results indicate that the proposed method is found to be highly reliable and accurate.

Originality/value

This method exhibits excellent conservation of the area bounded by the interface. The extraordinary performance is also shown in dealing with complex interface topological changes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2015

Cheng Gao, Rui-Na Xu and Pei-Xue Jiang

Lattice Boltzmann method (LBM) is employed to explore friction factor of single-phase fluid flow through porous media and the effects of local porous structure including geometry…

Abstract

Purpose

Lattice Boltzmann method (LBM) is employed to explore friction factor of single-phase fluid flow through porous media and the effects of local porous structure including geometry of grains in porous media and specific surface of porous media on two-phase flow dynamic behavior, phase distribution and relative permeability. The paper aims to discuss this issue.

Design/methodology/approach

The 3D single-phase LBM model and the 2D multi-component multi-phase Shan-Chen LBM model (S-C model) are developed for fluid flow through porous media. For the solid site, the bounce back scheme is used with non-slip boundary condition.

Findings

The predicted friction factor for single-phase fluid flow agrees well with experimental data and the well-known correlation. Compared with porous media with square grains, the two-phase fluids in porous media with circle grains are more connected and continuous, and consequently the relative permeability is higher. As for the factor of specific porous media surface, the relative permeability of wetting fluids varies a little in two systems with different specific surface areas. In addition, the relative permeability of non-wetting fluid decreases with the increasing of specific surface of porous media due to the large flow resistance.

Originality/value

Fluid-fluid interaction and fluid-solid interaction in the SC LBM model are presented, and schemes to obtain immiscible two-phase flow and different contact angles are discussed. Two-off mechanisms acting on the wetting fluids is proposed to illustrate the relative permeability of wetting fluids varies a little in two systems with different specific surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 September 2008

Emre Sozer and Wei Shyy

The purpose of this paper is to develop an empiricism free, first principle‐based model to simulate fluid flow and heat transfer through porous media.

Abstract

Purpose

The purpose of this paper is to develop an empiricism free, first principle‐based model to simulate fluid flow and heat transfer through porous media.

Design/methodology/approach

Conventional approaches to the problem are reviewed. A multi‐scale approach that makes use of the sample simulations at the individual pore levels is employed. The effect of porous structures on the global fluid flow is accounted for via local volume averaged governing equations, while the closure terms are accounted for via averaging flow characteristics around the pores.

Findings

The performance of the model has been tested for an isothermal flow case. Good agreement with experimental data were achieved. Both the permeability and Ergun coefficient are shown to be flow properties as opposed to the empirical approach which typically results in constant values of these parameters independent of the flow conditions. Hence, the present multi‐scale approach is more versatile and can account for the possible changes in flow characteristics.

Research limitations/implications

Further validation including non‐isothermal cases is necessary. Current scope of the model is limited to incompressible flows. The methodology can accommodate extension to compressible flows.

Originality/value

This paper proposes a method that eliminates the dependence of the numerical porous media simulations on empirical data. Although the model increases the fidelity of the simulations, it is still computationally affordable due to the use of a multi‐scale methodology.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 10000